Performance Evaluation and Modeling of Wireless Personal Area Networks

N. Golmie, D. Cypher, R. E. Van Dyck
A. Soltanian, I. El Bakkouri, N. Chevrollier, H. Roelofs

National Institute of Standards and Technology
Gaithersburg, MD 20899
USA
Outline

• Technology Challenges in Wireless Personal Area Networks (WPANs)
 – Interoperability, interference, support of multimedia applications
• Formal Modeling of Bluetooth
• Coexistence Performance Evaluation of WPANs and WLANs in the 2.4 GHz band.
 – Simulation models (MAC, PHY, Channel)
 – Analysis and Results
• Coexistence Mechanisms
• Conclusions
Key Challenges in WPANs

• Non-interoperable protocols and multiple industry specifications:
 – Bluetooth, HomeRF, IEEE 802.11, DECT, IEEE 802.15 (TG1, TG3, TG4), HIPERLAN.

• Interference in the unlicensed bands:
 – 2.4 GHz ISM Band: Bluetooth, HomeRF, IEEE 802.11, IEEE 802.11-b devices operating in the same environment lead to significant performance degradation in WPAN and WLAN services.
 – 5 GHz Band: HIPERLAN and IEEE 802.11a, IEEE 802.17, weather radar.
Bluetooth

- Wireless Personal Area Networking
- 1 Mb/s Total Data Rate with TDMA structure
 - Frequency hopping on a packet basis
- Approximately 10 m Range
 - 1 mw to 100 mw Transmitter Power
 - Low Cost Radio Receivers
- Initially Designed for One Hop Operation
 - Star-like Topology
 - 1 Master and up to 7 Slaves
 - Scatternets to allow multiple hop networks
- Voice and Data Links
IEEE 802.11b

- Wireless Local Area Network (WLAN)
 - Wireless Ethernet
- 1, 2, 5.5, and 11 Mb/s
 - Direct Sequence Spread Spectrum
 - Complementary Code Keying
- Carrier Sense Multiple Access with Collision Avoidance
 - Also virtual carrier sense using request-to-send (RTS) and clear-to-send (CTS) message
- Range on the order of 100 m
 - Up to 1 W Transmitter Power
• Allows formal modeling and (with additional tools) verification of a protocol - Bluetooth
 – Ensure that IEEE 802.15.1 (WPAN) specifications are correct
• Provides a hierarchical view of the protocol
• Can be used to generate a software implementation
• Test scenario creation
Sample SDL Charts
System Simulation Modeling

- Detailed DSP Transmitter and Receiver Simulation Models (stage 1 - NIST)
- Link Budget Analysis (stage 0 - Mobilian)

Parameters IN
Main Packet: Type, Power, Frequency, distance(tx,rx)
Interference Packet: Type, Power, Frequency, distance(tx,rx), Time Offset
Spectral Domain
• Additive White Gaussian Noise, multipath fading
• Path loss model

\[L_p = \begin{cases}
32.45 + 20 \log(f \cdot d) & d < 8m \\
58.3 + 33 \log(d / 8) & \text{otherwise}
\end{cases} \]

• Received power and SIR depend on topology and device parameters:

\[P_R = P_T - L_p \]

\[SIR = P_R - P_I \]
• DSP based implementation of transceivers
• Design using typical parameters (goal is to remain non-implementation specific)
• Bluetooth
 – Non-coherent Limiter Discriminator receiver, Viterbi receiver with channel estimation and equalization
• IEEE 802.11
 – Direct Sequence Spread Spectrum (1 Mbits/s)
 – Complementary Code Keying (11 Mbits/s)
 – Frequency Hopping (1 Mbits/s)
• MAC behavioral implementation for Bluetooth and IEEE 802.11 (connection mode)
• Frequency hopping
• Error detection and correction
 – Different error correction schemes applied to packet segments (Bluetooth)
 – FCS (802.11)
• Performance statistics collection
 – Access delay, packet loss, residual error, throughput
Simulation Scenario

Impact of WLAN Interference on Bluetooth Performance

Impact of Bluetooth Interference on WLAN Performance

Traffic Distribution for WLAN and BT (LAN)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offered Load</td>
<td>30% of Channel Capacity</td>
</tr>
<tr>
<td>Packet Size</td>
<td>Geometric Distr. Mean 368 bytes</td>
</tr>
</tbody>
</table>

Data

ACK

Statistics Collection Points
Impact of Interference on Packet Loss

Distance of Receiver (BT, WLAN) from Interference Source (BT, WLAN) (meters)

Probability of Packet Loss

- WLAN (11 Mbits/s) w/ BT Voice Interference
- BT LAN w/ WLAN (11 Mbits/s) Interference
- BT Voice w/ WLAN (11 Mbits/s) Interference
- WLAN (11 Mbits/s) w/ BT LAN Interference
Impact of Interference on MAC Access Delay

- **WLAN (11 Mbits/s) w/ BT LAN Interference**
- **BT LAN w/ WLAN (11 Mbits/s) Interference**

Mean Access Delay (seconds)

Distance of Receiver (BT, WLAN) from Interference Source (BT, WLAN) (meters)
Coexistence Mechanisms

• Collaborative:
 – TDMA solution for scheduling Bluetooth and 802.11 packets on the same device.
 – Notch filtering in 802.11 receiver to remove Bluetooth

• Non-collaborative:
 – Adaptive frequency hopping
 – Varying packet size, data rates, encapsulation
 – MAC scheduling
 – Distributed power control
Packet Loss for Bluetooth:
Traffic: DM1; 30% Offered Load

Distance of WLAN Mobile from Bluetooth Slave (meters)

- No coexistence scheme
- Ptx = 100 mW
- Adaptive Power Control
- Ptx = 80 mW
- MAC Packet Scheduling
- Ptx = 8 mW
- Ptx = 3 mW
Access Delay for Bluetooth:
Traffic: DM1; 30% Offered Load
Conclusions

• Bluetooth and 802.11b can cause significant interference to each other

• Coexistence mechanisms can substantially reduce this problem
 – Ongoing work required for Bluetooth voice packets
 – Proposals are being evaluated and refined in IEEE 802.15 Task Group 2
 – Standard practices for operations are being developed

• Having unambiguous specifications is essential
 – Submitted SDLs for Bluetooth to be included as an Annex to IEEE 802.15 TG1 specifications.

• Preparing to release simulation tools to the public.