6. Model-Free and Model-Based Estimation of Random Processes

6.1. Model-free estimation of random processes

In this section \(\{X(n)\} \) is a WSS process with
- mean value: \(\mu_X = \mathbb{E}[X(n)] \)
- autocorrelation function: \(R_{XX}(k) = \mathbb{E}[X(n)X(n+k)] \)

The autocovariance function of \(\{X(n)\} \) is
\[
C_{XX}(k) = \mathbb{E}[(X(n) - \mu_X)(X(n+k) - \mu_X)] = R_{XX}(k) - \mu_X^2
\]

- **Observed sequence:**
 We assume that \(\{X(0), ..., X(N-1)\} \) can be observed.

Example 1: Wöller sunspot numbers

![Graph of sunspot numbers](image)

Defining the window function
\[
g(n) = \begin{cases}
1 & ; \quad n \in \{0, ..., N-1\} \\
0 & ; \quad \text{otherwise}
\end{cases}
\]

the observed sequence reads:
\[
X_{\text{obs}}(n) = g(n)X(n)
\]

6.1.1. Estimation of the mean-value

- **Arithmetic mean:**
 \[
 \hat{\mu}_X = \bar{X} = \frac{1}{N} \sum_{n=0}^{N-1} X(n)
 \]

- **Mean and variance of \(\bar{X} \):**
 - Mean: \(\bar{X} \) is an unbiased estimator of \(\mu_X \):
 \[
 \hat{\mu}_X = \mu_X
 \]
 - Variance:
 \[
 \sigma^2_{\bar{X}} = \frac{1}{N} \sum_{k=-(N-1)}^{N-1} \left[1 - \frac{|k|}{N}\right] C_{XX}(k)
 \]

Special case: When \(\{X(n)\} \) is an uncorrelated process:
\[
\sigma^2_{\bar{X}} = \frac{1}{N} C_{XX}(0) = \frac{1}{N} \sigma^2_X
\]

Proof: See Exercise 9.1.
To show that the sample autocorrelation function \(\hat{R}_{XX}(k) \) is biased we recast it as:

\[
\hat{R}_{XX}(k) = \frac{1}{N} \sum_{n=0}^{\infty} X_{\text{obs}}(n)X_{\text{obs}}(n+k)
\]

\[
= \frac{1}{N} \sum_{n=\infty}^{\infty} g(n)g(n+k)X(n)X(n+k)
\]

Taking the expectation on both sides yields

\[
E[\hat{R}_{XX}(k)] = \frac{1}{N} R_{gg}(k) \hat{R}_{XX}(k)
\]

The function

\[
w_B(k) = \frac{1}{N} R_{gg}(k) = \begin{cases}
1 - \frac{|k|}{N} & ; |k| < N \\
0 & ; \text{otherwise}
\end{cases}
\]

is called the Bartlett window.

With this definition, the bias of \(\hat{R}_{XX}(k) \) can be recast as

\[
E[\hat{R}_{XX}(k)] = w_B(k) \hat{R}_{XX}(k)
\]
• **Biased sample autocovariance:**

\[\hat{C}_{XX}(k) = \hat{R}_{XX}(k) - \hat{\mu}_X^2 \]

Example 1: Wolfer sunspot numbers

![Graph of biased sample autocovariance](image)

• **Unbiased sample autocorrelation function:**

\[
\hat{R}_{XX}(k) = \begin{cases}
\frac{1}{N-k} \sum_{n=0}^{N-k-1} X(n)X(n+k) & ; \quad k = 0, \ldots, N-1 \\
\hat{R}_{XX}(-k) & ; \quad k = -(N-1), \ldots, -1 \\
0 & ; \quad |k| \geq N
\end{cases}
\]

\(\hat{R}_{XX}(k) \) is unbiased for \(|k| < N\):

\[
\mathbb{E}[\hat{R}_{XX}(k)] = w_r(k) \hat{R}_{XX}(k)
\]

where \(w_r(k)\) is the centered rectangular function:

![Graph of rectangular function](image)

• **Properties of the sample autocorrelation functions:**

- \(\hat{R}_{XX}(k) = w_B(k) \hat{R}_{XX}(k) \)

- With \(N\) observations, we can only estimate \(R_{XX}(k)\) for \(|k| < N\).

- In general, it is difficult to calculate the variance of the sample autocorrelation functions since the computation involves fourth moments of the form \(\mathbb{E}[X(n)X(n+m)X(k)X(k+m)]\).

 In the Gaussian case these moments can be evaluated and the variance of the sample autocorrelation functions can be calculated (See Exercise 9.8 of [Shannugan]).
- A general conclusion is that the variance of $\hat{R}_{XX}(k)$ and $\hat{R}_{XX}(k)$ increases with $|k|$ since the number of observations considered in the computation of these values is $N - |k|.$

6.1.3. Estimation of the power spectral density:

- **Continuous-frequency periodogram:**
 Let us start from the slightly differently reformulated Fourier transform:
 \[
 X(f) = \sum_{n=0}^{N-1} x(n) \exp(-j2\pi nf) \quad f \in [0, 1)
 \]

The periodogram of $X_{\text{obs}}(n)$ is defined to be
\[
\hat{S}_{XX}(f) = \mathcal{F}\{\hat{R}_{XX}(k)\}
= \frac{1}{N} \left| \sum_{n=0}^{N-1} X(n) \exp(-j2\pi nf) \right|^2 = \frac{1}{N} \left| \mathcal{F}\{X_{\text{obs}}(n)\}(f) \right|^2 \quad f \in [0, 1)
\]

Proof:

- **Discrete-frequency periodogram:**
 \[
 \hat{S}_{XX}(m) = \hat{S}_{XX}(f) \bigg|_{f = m/N} \quad m = 0, \ldots, N-1
 \]

<table>
<thead>
<tr>
<th>f</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Discrete Fourier transform:**
 The discrete Fourier transform and the inverse DFT are defined according to
 \[
 X_d(m) = \mathcal{F}_d(x(n)) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) \exp\left(-j2\pi \frac{nm}{N}\right)
 \]
 \[
 x(n) = \mathcal{F}_d^{-1}(X_d(m)) = \frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} X_d(m) \exp\left(j2\pi \frac{nm}{N}\right)
 \]

Relation between the discrete Fourier transform and the (continuous-frequency) Fourier transform:
\[
X_d(m) = \frac{1}{\sqrt{N}} X(f) \bigg|_{f = m/N} \quad m = 0, \ldots, N-1
\]

In particular, the discrete-frequency periodogram can be computed as
\[
\hat{S}_{XX}(m) = \left| \mathcal{F}_d\{X_{\text{obs}}(n)\}(m) \right|^2
\]
Example 1: Wölf er sunspot numbers

- **Bias of the periodogram:**
 Because the Fourier transform is a linear operation, we have
 \[\mathbb{E}[\hat{S}_{XX}(f)] = \mathcal{F}(\mathbb{E}[\hat{R}_{XX}(k)]) \]
 It follows from (6.2) that:
 \[\mathbb{E}[\hat{S}_{XX}(f)] = \mathcal{F} \{ w_B(k) R_{XX}(k) \} \]
 \[= W_p(f) \ast S_{XX}(f) \]
 The Fourier transform
 \[W_p(f) = \mathcal{F} \{ w_B(k) \} = \frac{1}{N} \left(\frac{\sin(\pi k)}{\sin(\pi f)} \right)^2 \]
 of the Bartlett window is called the Féjer kernel.

 Proof: It can be easily shown that the Fourier spectrum of \(R_{gg}(k) \) is
 \[|G(f)|^2 = \left(\frac{\sin(\pi N)}{\sin(\pi f)} \right)^2 \]
 where \(G(f) = \mathcal{F} \{ g(n) \} \).

In summary, the bias of \(\hat{S}_{XX}(f) \) and \(\hat{S}_{XX}(m) \) are given by

\[E[\hat{S}_{XX}(f)] = W_p(f) \ast S_{XX}(f) \]
\[E[\hat{S}_{XX}(m)] = [W_p(f) \ast S_{XX}(f)] \big|_{f = m/N} \]

- **Spectral leakage:**

\[W_p(f) \]

\[0 \quad 1/N \quad 2/N \quad f \]

\[f \]

\[0 \quad 1/2 \quad f \]

\[f \]

\[f \]

\[0 \quad 1/2 \quad f \]
As \(N \) increases to infinity, \(W_P(f) \to \delta(f) \), so that
\[
E[\hat{S}_{XX}(f)] = S_{XX}(f),
\]
i.e. \(\hat{S}_{XX}(f) \) and \(\hat{S}_{XX}(m) \) are asymptotically unbiased.

- **Variance of the periodogram:**
 The following asymptotic results are valid for a large classes of stochastic processes, and in particular for ARMA processes.

 As the number \(N \) of observations tends to infinity,
 \[
 \sigma^2_{\hat{S}_{XX}(f)} \to \begin{cases} 2S_{XX}(f)^2 & ; f = 0, 1/2 \\ S_{XX}(f)^2 & ; \text{otherwise} \end{cases}
 \]
 \[
 \sum \hat{S}_{XX}(f_1)\hat{S}_{XX}(f_2) \to 0 \quad \text{for any} \quad f_1, f_2 \in \left[0, \frac{1}{2}\right], f_1 \neq f_2
 \]

 Hence,
 - Any two “different” samples of the periodogram are asymptotically uncorrelated.
 - Remember that \(\hat{S}_{XX}(f) \) and consequently \(\hat{S}_{XX}(m) \) are even functions.
 - As \(N \) increases the variance of the periodogram does not vanish but stabilizes to a value. This value coincides with the asymptotic mean of the periodogram when \(f \neq 0, 1/2 \).

 These two properties are responsible of the erratic nature of the periodogram (see the periodogram of the sunspot numbers). Increasing the number of samples increases the spectral resolution only.

 Smoothing through windowing:
 Windowing aims at reducing the variability of the estimated spectrum.
 A lag window \(w(k) \) is a sequence satisfying the following properties:
 - \(w(k) \) is even, i.e. \(w(k) = w(-k) \).
 - \(w(k) = 0 \) for \(|k| > N \)
 - \(w(0) = 1 \)
The Blackman-Tukey estimator of the spectrum is of the form

\[\hat{S}_{XX}^{(W)}(f) = f(w(k)\hat{R}_{XX}(k)) \]

where \(w(k) \) is a given lag window with Fourier transform \(W(f) \).

Making use of the property of the Fourier transform, we obtain

\[\hat{S}_{XX}^{(W)}(f) = W(f) * \hat{S}_{XX}(f) \]

Usually, the spectral window \(W(f) \) is selected to have a narrow main lobe and low sidelobes. The above convolution corresponds to a local weighted averaging of \(\hat{S}_{XX}(f) \).

This averaging operation reduces the variability of \(\hat{S}_{XX}^{(W)}(f) \) but also leads to a reduction of the spectral resolution.

Example 1: Wolfer sunspot numbers

Some well-known lag windows:
6.2. Parametric (model-based) estimation of random processes

6.2.1. Box-Jenkins method:
• Key idea of the method:
 - The observed sequence \(\{y(0), \ldots, y(N-1)\} \) is transformed in such a way
 that the transformed sequence \(\{x(0), \ldots, x(N-1)\} \) can be reasonably
 assumed to be the realization of a WSS process \(\{X(n)\} \).
 - An ARMA\((p,q)\) process is fitted to \(\{x(0), \ldots, x(N-1)\} \).
 - The estimated autocorrelation function and power spectrum are identified
 to the autocorrelation function and the power spectrum of the estimated
 ARMA\((p,q)\) process.

Example 2: International airline passengers.

Example 3: Monthly accidental deaths in the U.S.A.

• The different steps of the Box-Jenkins method:
 1. Preprocessing (differencing, log, etc.)
 2. Model identification (Select degree of both AR and MA parts)
 3. Parameter estimation
 4. Diagnostic checking
 5. Estimated model
6.2.2. Preprocessing:

- **Objective:**
 The observed sequence \(\{y(0), \ldots, y(N-1)\} \) is transformed in such a way that the transformed sequence

\[
\{x(0), \ldots, x(N-1)\} = T[\{y(0), \ldots, y(N-1)\}]
\]

can be reasonably assumed to be the realization of a WSS process \(\{X(n)\} \).

- **Non-linear transformation to create stationarity:**
 Let \(\{y(n)\} \) be a sequence which exhibits some non-stationary features. We can apply a non-linear transformation \(T \) to \(\{y(n)\} \) to obtain a new sequence \(\{x(n)\} = T[\{y(n)\}] \) where these features are eliminated or at least reduced.

Example 2: International airline passengers.
The variability of the series increases linearly as a function of the level of the series. This variability is stabilized by applying the following transformation:

\[
U(n) = \ln(Y(n))
\]

To understand how the transformation \(Y(n) \to \ln(Y(n)) \) stabilizes the variability, let us assume that the standard deviation of \(\{Y(n)\} \) increases proportionally to its expectation:

\[
\sigma_{Y(n)} = c \mu_{Y(n)}
\]

Equivalently,

\[
E \left[\left(\frac{Y(n)}{\mu_{Y(n)}} - 1 \right)^2 \right] = c^2.
\]

We can rewrite \(U(n) = \ln(T(n)) \) as

\[
U(n) = \ln(\mu_{Y(n)}) + \ln\left(\frac{Y(n)}{\mu_{Y(n)}} \right) = \ln(\mu_{Y(n)}) + \ln\left(\frac{Y(n) - \mu_{Y(n)} + 1}{\mu_{Y(n)}} \right)
\]

Considering the first order Taylor approximation \(\ln(v+1) = v \) around 1, \(U(n) \) can be approximated according to

\[
U(n) \approx \ln(\mu_{Y(n)}) + \left(\frac{Y(n)}{\mu_{Y(n)}} - 1 \right)
\]

Approximation of the expectation and standard deviation of \(U(n) \):

\[
\mu_{U(n)} = \ln(\mu_{Y(n)})
\]

\[
\sigma_{U(n)} = c
\]

- **Differentiating to remove periodicity (seasonality):**

 Theoretical example 1:
 Let consider the sequence \(\{Y(n)\} \) where

 \[
 Y(n) = \left[1 - \cos\left(\frac{2\pi n}{12} \right) \right] + V(n)
 \]

 where \(\{V(n)\} \) is a WSS process.
For example, \(\{Y(n)\} \) might represent a monthly average (see Examples 2 to 3). Let
\[
\{X(n)\} = \Delta_{12}\{Y(n)\}
\]
be the sequence obtained by transforming \(\{Y(n)\} \) according to
\[
X(n) = Y(n) - Y(n - 12)
\]
Then
\[
X(n) = V(n) - V(n - 12)
\]
Hence, the sequence \(\{X(n)\} \) is stationary.

Example 3: Monthly accidental deaths in the U.S.A.

Let us consider the transformation
\[
X(n) = Y(n) - Y(n - 1).
\]
Then,
\[
X(n) = V(n) - V(n - 1) + \frac{1}{5}.
\]
Hence, \(\{X(n)\} \) is a WSS process, which can be modelled as an ARMA process.

- **ARIMA\((p,d,q)\)** processes:

 Notice that the above process \(\{X(n)\} \) is the “discrete derivative” of \(\{V(n)\} \).
 Let us introduce the following notation for discrete derivative:
 \[
 \{X(n)\} = \Delta\{Y(n)\} \quad \text{if} \quad X(n) = Y(n) - Y(n - 1) \quad \text{for all} \quad n.
 \]
 Notice that according to the previously introduced notation
 \[
 \Delta\{Y(n)\} = \Delta_1\{Y(n)\}.
 \]

A process \(\{Y(n)\} \) is an **ARIMA\((p,d,q)\)** process if its \(d\)th discrete derivative
\[
\{X(n)\} = \Delta^d\{Y(n)\}
\]
is an ARMA\((p,q)\) process.

An ARIMA process reduces after differentiating finitely many times to an ARMA process. The letter \(I\) in ARIMA stands for “integrated”. Notice that if \(\{X(n)\} = \Delta\{Y(n)\} \) then \(\{Y(n)\} \) can be obtained by carrying out a discrete integration of \(\{X(n)\} \).
6.2.3. Fitting ARMA(p,q) processes:

• **Definition (review):**
 A random sequence \(\{X(n)\} \) is an autoregressive moving average process \((p, q)\) th order (ARMA\((p, q)\)) if it is WSS and for any \(n\):
 \[
 X(n) = \sum_{i=1}^{p} \phi_i X(n-i) + \sum_{i=1}^{q} \theta_i Z(n-i) + Z(n)
 \]
 where \(Z(n)\) is a white Gaussian process with variance \(\sigma_Z^2\).

• **Filter implementation:**

• **Parameter estimation:**
 - **Model order** \(p, q\):
 \(p\) and \(q\) are estimated by applying the Akaike information criterion (AIC) or the minimum description length (MDL) criterion.
- Coefficients \(\phi_1, \ldots, \phi_p \) and \(\theta_1, \ldots, \theta_q \):

1. The parameters of an AR process can be estimated by solving the Yule-Walker equations:

\[
\hat{\Phi} = \begin{bmatrix} \hat{\phi}_1 \\ \vdots \\ \hat{\phi}_p \end{bmatrix}, \quad \hat{\gamma} = \begin{bmatrix} \hat{R}_{XX}(1) \\ \vdots \\ \hat{R}_{XX}(p) \end{bmatrix},
\]

where

\[
\hat{\Gamma} = \begin{bmatrix} \hat{R}_{XX}(0) & \hat{R}_{XX}(1) & \cdots & \hat{R}_{XX}(p-1) \\ \hat{R}_{XX}(-1) & \hat{R}_{XX}(0) & \cdots & \hat{R}_{XX}(p-2) \\ \vdots & \vdots & \ddots & \vdots \\ \hat{R}_{XX}(-(p-1)) & \hat{R}_{XX}(-(p-2)) & \cdots & \hat{R}_{XX}(0) \end{bmatrix}
\]

Example 1: Wölf er sunspot numbers

The estimated AR model for the mean-corrected data is found to be

- \(p = 3 \),
 - \(X(n) - \hat{\phi}_1 X(n-1) - \hat{\phi}_2 X(n-2) - \hat{\phi}_3 X(n-3) = Z(n) \)

2. In the general case of an ARMA process, \(\phi_1, \ldots, \phi_p \) and \(\theta_1, \ldots, \theta_q \) can be estimated by using the maximum likelihood method.

Example 1: Wölf er sunspot numbers

The estimated ARMA model for the mean-corrected data is found to be

- \(p = 9, q = 1 \),
 - \(X(n) - 1.475 X(n-1) + 0.937 X(n-2) - 0.218 X(n-3) + 0.134 X(n-9) = Z(n) \)

- Estimate of the power spectrum:
 - Estimate of the transfer function:
 - Estimate of the power spectrum:
 - Estimate with the AR(3) model:

\[
\hat{\hat{H}}(f) = \frac{1 + \sum_{i=1}^{p} \hat{\phi}_i \exp(-j2\pi if)}{1 - \sum_{i=1}^{q} \hat{\theta}_i \exp(-j2\pi if)}
\]

\[
\hat{S}_{XX}(f) = \frac{1 + \sum_{i=1}^{q} \hat{\theta}_i \exp(-j2\pi if)}{1 - \sum_{i=1}^{p} \hat{\phi}_i \exp(-j2\pi if)^2 \hat{\sigma}_Z^2}
\]

Example 1: Wölf er sunspot numbers

- Estimate with the AR(3) model:
- Estimate with the ARMA(9,1) model:

\[\hat{S}_{XX}(f) = \gamma^{-1}(\hat{\xi}_{XX}(f)) \]