Problem 10.1: Transformation for trend elimination

Solution

a) Transform $Y(n)$ into a WSS process

Let Δ denote the 1st order discrete derivative:

$$\Delta Y(n) = Y(n) - Y(n-1)$$

$$= an^2 + V(n) - a(n-1)^2 - V(n-1)$$

$$= an^2 - a(n-1)^2 + V(n) - V(n-1)$$

$$= a[n^2 - (n-1)^2] + V(n) - V(n-1)$$

$$= a\left(2n - 1\right) + V(n) - V(n-1).$$

Applying the 2nd order derivative yields

$$\Delta^2 Y(n) = \Delta(\Delta Y(n))$$

$$= \Delta Y(n) - \Delta Y(n-1)$$

$$= a(2n - 1) + V(n) - V(n-1) - a\left[2(n-1) - 1\right] - V(n-1) + V(n-2)$$

$$= 2an - a - 2an + 3a + V(n) - 2V(n-1) + V(n-2)$$

$$= 2a + V(n) - 2V(n-1) + V(n-2).$$

Define

$$X(n) \doteq \Delta^2 Y(n)$$

$$= 2a + V(n) - 2V(n-1) + V(n-2).$$

As a linear combination of the zero-mean WSS process $V(n - k), k = 0, 1, 2, 3$ and the constant value $2a$, $X(n)$ is a WSS process with mean $2a$. Therefore the 2nd order discrete derivative (Δ^2) is the required transformation.

b) Autocorrelation function of $X(n)$:

Let

$$X(n) = 2a + Z(n),$$

where

$$Z(n) \doteq V(n) - 2V(n-1) + V(n-2).$$ \hspace{1cm} (1)

$Z(n)$ is a zero-mean WSS process. The autocorrelation function of $R_{XX}(k)$ can be
written as

\[R_{XX}(k) = E[X(n)X(n+k)] = E[(2a + Z(n))(2a + Z(n+k))] \]
\[= E[(2a)^2 + Z(n) \cdot 2a + Z(n+k) \cdot 2a + Z(n)Z(n+k)] \]
\[= (2a)^2 + 2a \cdot E[Z(n)] + 2a \cdot E[Z(n+k)] + R_{ZZ}(k) \]
\[= 4a^2 + R_{ZZ}(k). \]

(2)

According to (1), \(Z(n) \) is obtained by passing \(V(n) \) through the following filter

![Filter Diagram](image)

Then

\[R_{ZZ}(k) = R_{VV}(k) \ast R_{hh}(k) \]

where \(R_{hh}(k) \) is the autocorrelation function of the impulse response \(h(n) \) of the filter.

\[h(n) = \delta(n) - 2\delta(n-1) + \delta(n-2) \]

Hence,

\[R_{hh}(k) = \sum_{n=-\infty}^{\infty} h(n)h(n+k) \]
\[= h(k) \ast h(-k) \]
\[= [\delta(k) - 2\delta(k-1) + \delta(k-2)] \ast [\delta(-k) - 2\delta(-k-1) + \delta(-k-2)] \]
\[= \delta(k+2) - 4\delta(k+1) + 6\delta(k) - 4\delta(k-1) + \delta(k-2). \]

Notice that in the above expression, \(\delta(n-k_1) \ast \delta(n-k_2) = \delta(n-(k_1+k_2)) \).
Then

\[R_{ZZ}(k) = R_{VV}(k) \ast R_{hh}(k) \]
\[= R_{VV}(k) \ast \left[\delta(k + 2) - 4\delta(k + 1) + 6\delta(k) - 4\delta(k - 1) + \delta(k - 2) \right] \]
\[= R_{VV}(k + 2) - 4R_{VV}(k + 1) + 6R_{VV}(k) - 4R_{VV}(k - 1) + R_{VV}(k - 2). \]

Inserting the above expression into (2) yields

\[R_{XX}(k) = 4a^2 + R_{ZZ}(k) \]
\[= 4a^2 + R_{VV}(k + 2) - 4R_{VV}(k + 1) + 6R_{VV}(k) - 4R_{VV}(k - 1) + R_{VV}(k - 2). \]

So \(R_{XX}(k) \) is \(R_{ZZ}(k) \) shifted by \(4a^2 \) upwards.

Problem 10.2: the sunspot data

The m file for finding the ARMA/AR coefficients can be downloaded from the course webpage.

From figure 1 and figure 2 we can see that the frequency resolution of ARMA(9,1) model is higher than the AR(3) model.
Figure 1:
Figure 2: