Cautious Data Driven Fault Detection and Isolation applied to the Wind Turbine Benchmark

Prof. Michel Verhaegen

Delft Center for Systems and Control
Delft University of Technology
the Netherlands

November 28, 2011
Table of contents

1 Motivation
 - Modeling windturbines
 - Data Driven methods

2 From Subspace to Fault Detection
 - Need for a Cautious design in an IDE context
 - Basics of closed-loop Subspace Identification
 - The wrong way?
 - The right way: FICSI?
 - Illustration

3 Cautious Data Driven FDI
 - Defining an Isolation Logic
 - Results on the WT benchmark
Outline

1 Motivation
 - Modeling wind turbines
 - Data Driven methods

2 From Subspace to Fault Detection
 - Need for a Cautious design in an IDE context
 - Basics of closed-loop Subspace Identification
 - The wrong way?
 - The right way: FICSI?
 - Illustration

3 Cautious Data Driven FDI
 - Defining an Isolation Logic
 - Results on the WT benchmark
“Standard” WT Modeling Approach

Windturbine Modeling Package

Geometrical, Material cst, Atmospheric Data, ...

"Dynamic" Mathematical Model
“Standard” WT Modeling Approach

Motivation
Modeling
Data Driven methods

Subspace → FDI
Problems
Basics SI
The wrong way?
The right way: FICSI?
Illustration

Cautious Data
Driven FDI
Defining an Isolation
Logic
Results on the WT benchmark

Windturbine Modeling Package

Geometrical, Material cst, Atmospheric Data, ...

"Dynamic" Mathematical Model

Features

- Multi-physics modeling environments (Aero-, Mech-, Ele-, Pneu-, Hydro, Marit-, Embed-, etc.)
“Standard” WT Modeling Approach

Windturbine Modeling Package

- Geometrical, Material cst, Atmospheric Data, ...
- "Dynamic" Mathematical Model

Features

- Multi-physics modeling environments (Aero-, Mech-, Ele-, Pneu-, Hydro, Marit-, Embed-, etc.) → *Complexity*
- Major (proprietary) data bases of “validated” subcomponents
- And control design features.

Prof. Michel Verhaegen
Getting real-life ...

Alternative Feedback Control Design Methods

- “Glueing” together single loop feedback controllers designed for linearized FP^a models
Alternative Feedback Control Design Methods

- “Glueing” together single loop feedback controllers designed for linearized FP \(^a\) models → time consuming
- Robust Multivariable control based on linearized FP models (making use of “Coleman transform”)

\(^a\)First Principles
Alternative Feedback Control Design Methods

- “Glueing” together single loop feedback controllers designed for linearized FP models → time consuming
- Robust Multivariable control based on linearized FP models (making use of “Coleman transform”)

Standing questions

- Commissioning still needs to be done!
- How to get the model uncertainty?
- How to get realistic disturbance models?
- How to (re-)configure the controller?
Getting real-life ...

Alternative Feedback Control Design Methods

- “Glueing” together single loop feedback controllers designed for linearized FP\(^a\) models → time consuming
- Robust Multivariable control based on linearized FP models (making use of “Coleman transform”)

\(^a\)First Principles

Standing questions

- Commissioning still needs to be done!
- How to get the model uncertainty?
- How to get realistic disturbance models?
- How to (re-)configure the controller? Cautious Data Driven FDI as a starting point!
The “Classical” Data Driven design cycle

\[
\begin{align*}
x(k + 1) & = Ax(k) + Bu(k) + Ke(k) \\
y(k) & = Cx(k) + Du(k) + e(k)
\end{align*}
\]
Motivation
Modeling
Data Driven methods
Subspace → FDI
Problems
Basics SI
The wrong way?
The right way: FICSI?
Illustration
Cautious Data Driven FDI
Defining an Isolation Logic
Results on the WT benchmark

Problems with the Classical Data Driven Design Cycle
Motivation
Modeling
Data Driven methods

Subspace →
FDI
Problems
Basics SI
The wrong way?
The right way:
FICSI?
Illustration

Cautious Data
Driven FDI
Defining an Isolation
Logic
Results on the WT
benchmark

Problems with the Classical Data Driven Design Cycle

due to fault? or model uncertainty?
Streamlining Data Driven Synthesis

Motivation
Modeling
Data Driven methods

Subspace \rightarrow
FDI
Problems
Basics SI
The wrong way?
The right way: FICS?
Illustration

Cautious Data
Driven FDI
Defining an Isolation
Logic
Results on the WT
benchmark

Prof. Michel Verhaegen
2011-11 8 / 36
Outline

1 Motivation
- Modeling windturbines
- Data Driven methods

2 From Subspace to Fault Detection
- Need for a Cautious design in an IDE context
- Basics of closed-loop Subspace Identification
- The wrong way?
- The right way: FICSI?
- Illustration

3 Cautious Data Driven FDI
- Defining an Isolation Logic
- Results on the WT benchmark
Fault Detection using Identified model?

\[e(k) \]
\[u(k) \rightarrow d \rightarrow y(k) \]

\[\hat{r}(k) = y(k) - \hat{d} \cdot u(k) \]
\[\hat{d} = \mathcal{Y}_{t,1,N} \cdot \mathcal{U}_{t,1,N}^\dagger \]
Fault Detection using Identified model?

\[u(k) \rightarrow d \rightarrow y(k) \]

\[e(k) \]

\[r(k) = y(k) - \hat{d} \cdot u(k) \]

\[\hat{d} = \mathcal{V}_{t,1,N} \cdot \mathcal{U}_{t,1,N}^{\dagger} \]

Distribution of \(\Delta \hat{d} \)

\[\Delta \hat{d} = d - \hat{d} = \mathcal{E}_{t,1,N} \cdot \mathcal{U}_{t,1,N}^{\dagger} \]

\[\text{var}(\Delta \hat{d}) = \frac{\sigma^2_e}{\mathcal{U}_{t,1,N} \mathcal{U}^T_{t,1,N} / N} \]
Why & What is Cautious Fault Detection?

\[
\text{var}(\hat{r}(k)) = \text{var}(\Delta \hat{d} \cdot u(k)) + \text{var}(e(k))
\]

\[
= u^2(k) \cdot \text{var}(\Delta \hat{d}) + \sigma_e^2 = \left\{ \frac{u^2(k) \cdot \sigma_e^2}{Ut_{t,1,N}U^T_{t,1,N}/N} \right\} + \sigma_e^2
\]
Why & What is Cautious Fault Detection?

\[\text{var}(\hat{r}(k)) = \text{var}(\Delta \hat{d} \cdot u(k)) + \text{var}(e(k)) \]
\[= u^2(k) \cdot \text{var}(\Delta \hat{d}) + \sigma^2_e = \left\{ \frac{u^2(k) \cdot \sigma^2_e}{U_{t,1,N}U_{t,1,N}^T/N} \right\} + \sigma^2_e \]

Prof. Michel Verhaegen
Motivation
Modeling
Data Driven methods
Subspace → FDI
Problems
Basics SI
The wrong way?
The right way: FICSI?
Illustration
Cautious Data Driven FDI
Defining an Isolation Logic
Results on the WT benchmark

Data Driven Fault Detection for LTI SSM

\[\Sigma : \begin{align*}
 x(k + 1) &= Ax(k) + Bu(k) + Ke(k) \\
 y(k) &= Cx(k) + Du(k) + e(k)
\end{align*} \]
Motivation
Modeling
Data Driven methods

Subspace → FDI
Problems
Basics SI
The wrong way?
The right way: FICSI?
Illustration

Data Driven Fault Detection Identification Problem

Given i/o data sequences \(\{u(k), y(k)\}_{k=1}^N \) from the “nominal” (fault-free) system, determine a fault detection filter:

\[
r(k) = F \left(u(k), y(k) \right)
\]

and its test statistic.
Data equation for SI

Consider Σ represented in innovation form:

\[
\begin{align*}
\dot{x}(k+1) &= (A - KC) \hat{x}(k) + (B - KD) u(k) + K y(k) \\
y(k) &= C \hat{x}(k) + Du(k) + e(k)
\end{align*}
\]

with the innovation signal $e(k)$ zero-mean white noise with covariance matrix R_e.
Data equation for SI

Consider Σ represented in innovation form:

\[
\begin{align*}
\hat{x}(k+1) &= (A - KC) \hat{x}(k) + (B - KD) u(k) + Ky(k) \\
y(k) &= C\hat{x}(k) + Du(k) + e(k)
\end{align*}
\]

with the innovation signal $e(k)$ zero-mean white noise with covariance matrix R^e.

Further, let $z(t)^T = [u(t)^T \quad y(t)^T]$, then we can write the state $\hat{x}(t)$ as:

\[
\hat{x}(t) = \Phi^p \hat{x}(t-p) + \Phi^{p-1}[\tilde{B}, K] \quad \Phi^{p-2}[\tilde{B}, K] \quad \cdots \quad [\tilde{B}, K]
\]

where $L_p = \begin{bmatrix} z(t-p) \\ z(t-p+1) \\ \vdots \\ z(t-1) \end{bmatrix}$.
Data equation for PBSID (Chiuso 2007)

\[\mathcal{Y}_{t,L,1} = [I_L \otimes (C\Phi^p)] \cdot \hat{x}(t - p) + \]

\[\begin{bmatrix}
 C\Phi^p^{-1}[\tilde{B}, K] & C\Phi^p^{-2}[\tilde{B}, K] & \cdots & C[\tilde{B}, K] \\
 0 & C\Phi^p^{-1}[\tilde{B}, K] & \cdots & C\Phi[\tilde{B}, K] \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & C\Phi^L-1[\tilde{B}, K]
\end{bmatrix} \cdot \mathcal{Z}_{t-p,p,1} + \]

\[\mathcal{H}_z^L = \begin{bmatrix}
 [D, 0] \\
 C[\tilde{B}, K] \\
 \vdots \\
 C\Phi^L-2[\tilde{B}, K] & C\Phi^L-3[\tilde{B}, K] & \cdots & [D, 0]
\end{bmatrix}
\]

\[\mathcal{Z}_{t,L,1} + \mathcal{E}_{t,L,1} \]
Data equation for PBSID (Chiuso 2007)

Assuming $\Phi^p \approx 0$:

\[Y_{t,L,N} \approx \begin{bmatrix} C\Phi^{p-1}[\tilde{B}, K] & C\Phi^{p-2}[\tilde{B}, K] & \cdots & C[\tilde{B}, K] \\ C\Phi^p[\tilde{B}, K] & C\Phi^{p-1}[\tilde{B}, K] & \cdots & C\Phi[\tilde{B}, K] \\ \vdots & \vdots & \ddots & \vdots \\ C\Phi^{p-1+L}[\tilde{B}, K] & \cdots & \cdots & C\Phi^{L-1}[\tilde{B}, K] \end{bmatrix} \cdot \mathcal{Z}_{t-p,p,N} = \mathcal{O}_L \mathcal{L}_p \approx \mathcal{H}_z^{L,p} \]

\[\mathcal{Z}_{t,L,N} + \mathcal{E}_{t,L,N} \]

\[\begin{bmatrix} [D, 0] \\ C[\tilde{B}, K] \\ \vdots \\ C\Phi^{L-2}[\tilde{B}, K] & C\Phi^{L-3}[\tilde{B}, K] & \cdots & [D, 0] \end{bmatrix} \]
Parameter identification errors in closed-loop identification

Biased LS estimates

Denote $\Xi = \begin{bmatrix} C \Phi^{p-1} [\tilde{B} & K] & \cdots & C [\tilde{B} & K] & D \end{bmatrix}$.

$$\hat{\Xi} = Y_{t,1,N} \cdot \begin{bmatrix} Z_{t-p,p,N} \\ U_{t,1,N} \end{bmatrix} \dagger$$

$$\hat{\Sigma}_e = Cov \left(Y_{t,1,N} - \hat{\Xi} \cdot Z_i \right)$$
Parameter identification errors in closed-loop identification

Motivation
Modeling
Data Driven methods

Subspace →
FDI
Problems
Basics SI
The wrong way?
The right way:
FICSI?
Illustration

Cautious Data
Driven FDI
Defining an Isolation
Logic

Results on the WT
benchmark

Biased LS estimates
Denote $\Xi = \begin{bmatrix} C \Phi^{-1} & [\tilde{B} & K] & \cdots & C & [\tilde{B} & K] & D \end{bmatrix}$.

$$\hat{\Xi} = \mathcal{V}_{t,1,N} \cdot \begin{bmatrix} \mathcal{Z}_{t-p,p,N} \\ \mathcal{U}_{t,1,N} \end{bmatrix}^{\dagger}$$

$$\hat{\Sigma}_{e} = \text{Cov} \left(\mathcal{V}_{t,1,N} - \hat{\Xi} \cdot \mathcal{Z}_{i} \right)$$

$\text{vec}(\hat{\Xi}) \triangleq \hat{\Theta}$ contains the following errors.

$$\hat{\Theta} - \Theta = \delta \Theta + \Sigma_{\hat{\Theta}}^{1/2} \cdot \epsilon \quad \epsilon \sim (0, I)$$

$$\Sigma_{\hat{\Theta}} = \left(\mathcal{Z}_{i} \mathcal{Z}_{i}^{T} \right)^{-1} \otimes \hat{\Sigma}_{e}$$
Recall the data equation:

\[Y_{t,L,N} = [I_L \otimes (C\Phi^p)] \cdot X_{t-p,L,N} + H_{zL,p} \cdot Z_{t-p,p,N} + T_{zL} Z_{t,L,N} + E_{t,L,N} \]

Work with an (accurate) approximation:

\[O_L \cdot \mathcal{X}_{t,1,N} \approx H_{zL,p} \cdot Z_{t-p,p,N} \]

\[O_L \cdot \mathcal{X}_{t,1,N} \approx \partial \text{LS estimates} \cdot Z_{t-p,p,N} \]

\[O_L \cdot \mathcal{X}_{t,1,N} \approx \partial \text{past I/Os} \]
Recall the data equation:

\[
\mathcal{Y}_{t,L,N} = [I_L \otimes (C\Phi^p)] \cdot \mathcal{X}_{t-p,L,N} + \underbrace{\mathcal{H}^{L,p}_z \cdot \mathcal{Z}_{t-p,p,N}}_{\text{LS estimates}} + \underbrace{T^L_z \mathcal{Z}_{t,L,N} + \mathcal{E}_{t,L,N}}_{\text{past I/Os}}
\]

Get an estimate of the left null space of \(\mathcal{O}_L \):

\[
\mathcal{O}_L \cdot \mathcal{X}_{t,1,N} \approx \underbrace{\mathcal{H}^{L,p}_z \cdot \mathcal{Z}_{t-p,p,N}}_{\text{LS estimates}} \text{ past I/Os}
\]

\[
\mathcal{H}^{L,p}_z \cdot \mathcal{Z}_{t-p,p,N} = \left[\begin{array}{c} U_{\mathcal{H}Z} \\ \left(U^\perp_{\mathcal{H}Z} \right)^T \end{array} \right] \cdot \left[\begin{array}{cc} S_{\mathcal{H}Z} & 0 \\ 0 & S^\perp_{\mathcal{H}Z} \end{array} \right] \cdot \left[\begin{array}{c} V^T_{\mathcal{H}Z} \\ \left(V^\perp_{\mathcal{H}Z} \right)^T \end{array} \right].
\]
Recall the data equation:

\[\mathbf{y}_{t,L,N} = [I_L \otimes (C\Phi^p)] \cdot \mathbf{x}_{t-p,L,N} + \mathbf{H}_{z}^{L,p} \cdot \mathbf{z}_{t-p,p,N} + \mathbf{T}_{z}^{L} \cdot \mathbf{z}_{t,L,N} + \mathbf{e}_{t,L,N} \]

Define the residual and its statistic?

\[\mathbf{O}_{L} \cdot \mathbf{x}_{t,1,N} \approx \mathbf{H}_{z}^{L,p} \cdot \mathbf{z}_{t-p,p,N} = \left[U_{HZ} \ U_{HZ}^{\perp} \right] \cdot \left[S_{HZ} \ 0 \right] \cdot \left[V_{HZ}^{T} \left(V_{HZ}^{\perp} \right)^{T} \right] \cdot \left(I - \mathbf{T}_{y}^{L} \right) \cdot \mathbf{y}_{k,L} - \mathbf{T}_{u}^{L} \cdot \mathbf{u}_{k,L} \]

Identifying a parity relation from data (DD-PSA)
Disadvantages DD-PSA

Approximation in the SVD AND annihilate what is known!

\[\mathcal{H}_z^{L,p} \cdot Z_{t-p,p,N} = \begin{bmatrix} U_{HZ} & U_{HZ}^\perp \end{bmatrix} \cdot \begin{bmatrix} S_{HZ} & 0 \\ 0 & S_{HZ}^\perp \end{bmatrix} \cdot \begin{bmatrix} V_{HZ}^T \\ (V_{HZ}^\perp)^T \end{bmatrix}. \]

\[(U_{HZ}^\perp)^T \cdot O_L \neq 0. \]
Disadvantages DD-PSA

Approximation in the SVD AND annihilate what is known!

\[
\mathcal{H}_Z^{L,p} \cdot Z_{t-p,p,N} = [U_{HZ} \quad U_{HZ}^\perp] \cdot \begin{bmatrix}
S_{HZ} & 0 \\
0 & S_{HZ}^\perp
\end{bmatrix} \cdot \begin{bmatrix}
V_{HZ}^T \\
(V_{HZ}^\perp)^T
\end{bmatrix}.
\]

\[
(U_{HZ}^\perp)^T \cdot O_L \neq 0.
\]

Uncertainty in the residual generator

\[
r_{psa}^{k,L} = \left(U_{HZ}^\perp \right)^T \begin{pmatrix}
(I - \mathcal{T}_y^L) \\
\mathcal{U}_y^L
\end{pmatrix} y_{k,L} - \begin{pmatrix}
\mathcal{U}_u^L
\end{pmatrix} u_{k,L}.
\]

Nonlinear dependence of the stochastic uncertainties in \(r_{psa}^{k,L} \) on the parametric errors in \(\mathcal{H}_Z^{L,p}, \mathcal{T}_y^L, \mathcal{T}_u^L \).
Recall the data equation:

\[
Y_{t,L,N} = [I_L \otimes (C \Phi^p)] \cdot X_{t-p,L,N} + H_{z}^{L,p} \cdot Z_{t-p,p,N} + T_{z}^{L} Z_{t,L,N} + E_{t,L,N}
\]

LS estimates

past I/Os
Identifying a parity relation from data (FICSI) - nominal

Recall the data equation:

\[Y_{t,L,N} = [I_L \otimes (C \Phi^p)] \cdot X_{t-p,L,N} + H_{z,p} \cdot Z_{t-p,p,N} + T_L Z_{t,L,N} + \mathcal{E}_{t,L,N} \]

Work directly! with an (accurate) approximation:

\[Y_{t,L,N} \approx H_{z,p} \cdot Z_{t-p,p,N} + T_L Z_{t,L,N} + \mathcal{E}_{t,L,N} \]
Identifying a parity relation from data (FICSI) - nominal

Recall the data equation:

\[\mathcal{Y}_{t,L,N} = [I_L \otimes (C\Phi^p)] \cdot \mathcal{X}_{t-p,L,N} + H^L_p \cdot \mathcal{Z}_{t-p,p,N} + T^L_z \mathcal{Z}_{t,L,N} + \mathcal{E}_{t,L,N} \]

Define the residual and its statistic

\[\mathcal{Y}_{t,L,N} \approx H^L_p \cdot \mathcal{Z}_{t-p,p,N} + T^L_z \mathcal{Z}_{t,L,N} + \mathcal{E}_{t,L,N} \]

\[r_{ficsi}^{k,L} = \left(I - T^L_y \right) y_{k,L} - T^L_u u_{k,L} - H^L_p z_{k-L,p} \]

\[r_{k,L} \sim \begin{cases} \mathcal{N}(0, \Sigma^L_e), & \text{fault free,} \\ \mathcal{N}(\varphi_f, \Sigma^L_e), & \text{faulty.} \end{cases} \]

\[\Sigma^L_e = I_L \otimes \Sigma_e \text{ is the innovation covariance. } \varphi_f \text{ depends on additive faults.} \]
Cautious FICSI

FICSI

\[\hat{r}_{k,L} = y_{k,L} - \hat{T}_y^L y_{k,L} - \hat{T}_u^L u_{k,L} - \hat{H}_2^{L,P} z_{k-L,p} \]

\[\hat{\Xi} = \mathcal{Y}_{t,1,N} \mathcal{Z}_i^\dagger \]

\[\text{Cov}(\hat{r}_{k,L}) \approx \left[\mathcal{Z}_p^T \left(\mathcal{Z}_i \mathcal{Z}_i / N^T \right)^{-1} \mathcal{Z}_p \right] \otimes \hat{\Sigma}_e \]

Scalar Example

\[\hat{r}(k) = y(k) - \hat{d}u(k) \]

\[\hat{d} = \mathcal{Y}_{t,1,N} \mathcal{U}_{t,1,N}^\dagger \]

\[\text{Cov}(\hat{r}(k)) = \left\{ \frac{u^2(k) \hat{\sigma}_e^2}{\mathcal{U}_{t,1,N} \mathcal{U}_{t,1,N}^T / N} \right\} + \hat{\sigma}_e^2 \]

Remark: The residual \(\hat{r}_{k,L} \) has a bias!
FDI of VTOL

- inputs: collective pitch, longitudinal cyclic pitch;
- outputs: horizontal velocity, vertical velocity, pitch rate, and sum of vertical velocity, pitch rate, and pitch angle.
- discretized for $T_s = 0.5$ seconds,
- process and measurement noise, $w(k), v(k)$: zero mean white noise, with $Q_w = 0.25 \cdot I_4$ and $Q_v = 2 \cdot I_2$.
Identification experiment

- closed-loop experiment with $N = 2000$, $p = 20$, and

$$u(k) = - \begin{bmatrix} 0 & 0 & -0.5 & 0 \\ 0 & 0 & -0.1 & -0.1 \end{bmatrix} \cdot y(k) + \eta(k), \text{ with } \eta(k)$$

zero-mean white and $Q_\eta = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
Motivation
Modeling
Data Driven methods

Subspace → FDI
Problems
Basics SI
The wrong way?
The right way: FICSI?
Illustration

Cautious Data
Driven FDI
Defining an Isolation Logic
Results on the WT benchmark

Design of experiments

Identification experiment

- closed-loop experiment with $N = 2000, p = 20$, and
 $u(k) = -\begin{bmatrix} 0 & 0 & -0.5 & 0 \\ 0 & 0 & -0.1 & -0.1 \end{bmatrix} \cdot y(k) + \eta(k)$, with $\eta(k)$

- zero-mean white and $Q_\eta = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

FDI design and experiment

- $p = 15, L = 10, FAR = 0.003$,
- LQG tracking control to follow a vertical velocity of 50,
- biased collective pitch control:

![Graph showing time series data with a step function at 300 time steps]
Comparison of four methods

\[P_{ss} \] the classic model-based PSA, with \((A, B, C, D, K)\) identified by the PBSID-OPT method of Chiuso, 2007,

\[P_{mp} \] the DD-PSA

\[F_{no} \] the nominal data-driven FICSI method,

\[F_{rb} \] the cautious data-driven FICSI method.
P_{ss} the classic model-based PSA

![Graph showing test statistics and threshold](image.png)

Prof. Michel Verhaegen
Motivation

Modeling

Data Driven methods

Subspace → FDI

Problems

Basics SI

The wrong way?

The right way: FICSI?

Illustration

Cautious Data Driven FDI

Defining an Isolation Logic

Results on the WT benchmark

P_{mp} the data-driven PSA

![Graph showing test statistics](image)

- **P_{mp}** threshold
- **test statistics**
- **samples**

Prof. Michel Verhaegen
Motivation
Modeling
Data Driven methods
Subspace \rightarrow
FDI
Problems
Basics SI
The wrong way?
The right way:
FICSI?
Illustration
Cautious Data
Driven FDI
Defining an Isolation Logic
Results on the WT benchmark

F_{rb} v.s. F_{no} FICSI

Prof. Michel Verhaegen
2011-11 25 / 36
Related Publication

1 Motivation
- Modeling windturbines
- Data Driven methods

2 From Subspace to Fault Detection
- Need for a Cautious design in an IDE context
- Basics of closed-loop Subspace Identification
- The wrong way?
- The right way: FICSI?
- Illustration

3 Cautious Data Driven FDI
- Defining an Isolation Logic
- Results on the WT benchmark
Sensor/Actuator Fault Isolation with dual sensor/actuator configuration

- No voting is possible.
- We want to make use of/demonstrate the possibilities of FICSI.
- “Single” transducer failure at a particular time instant.
The wind turbine benchmark model

Three-bladed, horizontal-axial, and variable-speed wind turbine with a full converter, running in closed loop.\(^1\)

\(^1\) [Odgaard et al., 2009].
Fault Scenarios and requirements

<table>
<thead>
<tr>
<th>#</th>
<th>fault</th>
<th>duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>β_{1,m_1} fixed to 5^o</td>
<td>$2000 \sim 2100$ sec</td>
</tr>
<tr>
<td>3</td>
<td>β_{3,m_1} fixed to 10^o</td>
<td>$2600 \sim 2700$ sec</td>
</tr>
<tr>
<td>4</td>
<td>ω_{r,m_1} fixed to $1.4 rad/s$</td>
<td>$1500 \sim 1600$ sec</td>
</tr>
</tbody>
</table>

Requirements

- time of detection no longer than 10 sampling instants
- no missed detections
- mean time between false detection no larger than 10^5 sampling instants
2 dual sensor case

Consider an LTI system with 2 pairs of (identical) sensors for measuring the outputs of the system.

Isolation Strategy

Let the read-out of the first pair of sensors be denoted by S_1^1, S_1^2, and for the second pair by S_2^1, S_2^2, then we determine the fault detection filter:

$$r_{ij}(k) = F_{ij}(u(k), [S_i^1(k) \ S_j^2(k)])$$

<table>
<thead>
<tr>
<th>Failing Sensor</th>
<th>S_1^1</th>
<th>S_1^2</th>
<th>S_2^1</th>
<th>S_2^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{11}</td>
<td>\downarrow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{12}</td>
<td>\downarrow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{21}</td>
<td></td>
<td>\downarrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{22}</td>
<td></td>
<td></td>
<td>\downarrow</td>
<td>\downarrow</td>
</tr>
</tbody>
</table>
Disturbances and measurement noise

- The turbine is disturbed by unknown wind speed V_w.

- The variance of the measurement noise in the sensors, denoted as σ^2_\star, is respectively defined as:

$$
\begin{align*}
\sigma^2_{\beta_1,m_1} &= \sigma^2_{\beta_1,m_2} = \sigma^2_{\beta_2,m_1} = \sigma^2_{\beta_2,m_2} = \sigma^2_{\beta_3,m_1} = \sigma^2_{\beta_3,m_2} = 0.2, \\
\sigma^2_{\omega_g,m_1} &= \sigma^2_{\omega_g,m_2} = 0.05, \\
\sigma^2_{\omega_r,m_1} &= \sigma^2_{\omega_r,m_2} = 0.0251.
\end{align*}
$$
Experimental Conditions

- Wind speed profile set to the mean of the real measured wind data, i.e. $D_{\text{v_wind}} \equiv 12.3$ in the SimuLink model, “BenchMark.mdl”.
- No extra excitation signals were added to this model.
- We only used the data from the first 200 seconds, i.e. $N = 2 \times 10^4$.
- The horizons of the Fault Detection filters were chosen as $p = 60$, $L = 50$ and the FAR was set to 0.001.
- We only selected three output channels for the identification, i.e. $\beta_1,m_1, \omega_r,m_1, \omega_g,m_1$. The two input channels are β_r, τ_g.
Example: test statistics of filter \mathcal{F}_3
Tak for opmrksomheden