PHOTOVOLTAICS IN THE SMART GRID

Tamás Kerekes PhD

Department of Energy Technology
Aalborg University
Overview

Renewable energy 2011
PhotoVoltaics 2011
PV systems
Technical challenges
Conclusion
European power capacity

EU POWER CAPACITY MIX 2000

- Peat: 1,868 MW (0%)
- Fuel oil: 66,518 MW (12%)
- Large hydro: 105,552 MW (18%)
- Gas: 89,801 MW (16%)
- Nuclear: 128,471 MW (22%)
- Coal: 159,482 MW (28%)
- Biomass: 2,790 MW (1%)
- Waste: 2,054 MW (0%)
- Geothermal: 604 MW (0%)

EU POWER CAPACITY MIX 2011

- Peat: 2,030 MW (0%)
- Fuel oil: 53,745 MW (6%)
- Large hydro: 121,243 MW (10%)
- Gas: 209,953 MW (23%)
- Nuclear: 121,444 MW (14%)
- Coal: 230,253 MW (26%)
- Wind: 93,957 MW (10%)
- PV: 46,300 MW (5%)
- Biomass: 6,019 MW (1%)
- Small hydro: 4,845 MW (1%)
- Waste: 3,804 MW (0%)
- Geothermal: 924 MW (0%)
- Ocean: 254 MW (0%)
- CSP: 1107 MW (0%)

New electricity installations in 2011

• In Europe 45GW of new electricity generating capacity has been installed
• Solar PV installed 21,000 MW (46.7% of total installed capacity in 2011)
• Gas installations have a share of 21.6%
• Wind installations 21.4%

In Europe 32GW of renewable has been installed in 2011
- New PV installations represent 66%

PV capacity worldwide

According to EPIA:

- Worldwide 29GW of PV installed in 2011
- Total capacity up to almost 70GW of PV in the world at the end of 2011

Ref: EPIA and IEA-PVPS, 2012
Grid-Connected PV systems

Distributed Generation

- Residential Houses
- Energy Storage
- PV Inverter
- PV Array
- Power Quality Device
- Industry
- Low Voltage Grid
- Commercial Buildings
- Wind Power Plant
- Residential Houses
- Central Power Plants

Aalborg University: A One-Stop Shop to the Research on Smart-Grid
Grid-Connected PV systems

PV Generator

Electrical Power

Sun → Power Converter → Grid

Residential systems:
• up to 30kW
• connected to LV grid (400V)

Photovoltaic plants:
• several MW
• connected to MV grid (20kV)

Source: PoweOne Ultra 1400; tomorrowisgreener.com; danfoss.com
PV inverter structures

1. Central inverter
2. String inverters
3. Multi-string inverters

PV Strings
AC bus

Aalborg University: A One-Stop Shop to the Research on Smart-Grid
Slide 9
PV inverter structures: Central Inverters

- High Performance for Large PV Plant, High Level Monitoring, High Level Intelligence, Reliability
- High Efficiency (up 97%), Competitive prize/performance ratio.
- Typical structure – String inverter, 3-phase FB proven technology (more parallel) with transformer to MV
- Manufacturers:

ABB – PVS800
- Multi-level achieved by dual inverter configuration
- 100-500 kW
- 450-750Vdc input
- 400Vac out
- Efficiency > 97.5%
- Modular design, Long life-time, PF Comp
690VAC is standard in the wind industry
- Standard-components for up to 3MW + are cost-effective and reliable
- Inverter cost (approx.) proportional to AC current
- Up to 1500VDC is enabled for PV components by DIN VDE0100
- Reduces installation time
- Reduces copper costs and cabling losses

Nominal power: 333kW @ 3AC690V+N
- Max. efficiency: >98.5% with UltraEta®-topology
- MPP voltage range: 600-1200VDC
- Max. DC Voltage: 1400V
- Weight: approx. 400kg (1,20kg/kW)
- Outdoor-qualified housing
Structures: Central Inverters

SUNNY CENTRAL up to 1250MV (2x Sunny Central 630HE)

Efficient
- Without low voltage transformer → Higher system efficiency due to direct connection to the medium voltage Grid

Turnkey Delivery
- With medium-voltage transformer and concrete substation for outdoor installation

Optional
- Grid management
- Control of reactive power
- Medium-voltage switching stations for a flexible structure of large solar parks
- AC transfer station with measurement
- Medium-voltage transformers for other grid voltages (deviating from 20 kV)
Structures: Central Inverters

SUNNY CENTRAL 800CP (up to 800kVA)

Economic
- Direct deployment in the field due to outdoor enclosure
- Simplified shipping without concrete substation

Efficient
- Full nominal power at ambient temperatures up to 50 °C
- 10 % additional power for constant operation at ambient temperatures up to 25 °C
- Max. efficiency: 98.6 % (w/o internal power supply)
- Euro ETA: 98.4 %

Flexible
- Powerful grid management functions (including LVRT)
 - Remote controlled power reduction in case of grid overload
 - Frequency-dependent control of active power
 - Static voltage support based on reactive power
 - Dynamic Grid Support
- DC voltage range configurable

Reliable
- Easy and safe installation due to a separate connection area
- Optional: extended input voltage range up to 1,100 V
1. What constraints are more influential on LV networks?
2. What is the most effective solution?

- **Rural networks**
 - Available space for PV installation
 - Low load density
 - Higher areas for PV installation

- **Suburban networks**
 - Available space for PV installation
 - High load density
 - Limited and common areas for PV installation
 - Short distances to the substation

- **Urban networks**
 - Available space for PV installation
 - Low load density
 - Higher areas for PV installation
 - Longer distances to the substation

- **Critical networks**
Simulation Study

Low voltage (230/400V) Radial Feeder Model

Grid resistance \(R_g \) 0.034 ohm
Grid inductance \(L_g \) 0.5 mH
Transf. Primary and secondary resistance \(R_p, R_s \) 0.5 ohm
Transf. primary and secondary leak. inductance \(L_p, L_s \) 1 mH
Line resistance \(R \) 0.025 ohm
Line inductance \(L \) 0.04 mH
Line resistance \(R_1 \) 0.25 ohm
Line inductance \(L_1 \) 0.4 mH

- 11 inverters
- Average inverter model
- SOGI PLL
- Fixed DC voltage at 700 V
- Stationary-frame proportional-resonant digital current controller
TABLE I
Summary of The Grid Characteristic

<table>
<thead>
<tr>
<th>Grid characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of network</td>
<td>suburban</td>
</tr>
<tr>
<td>Type of settlement</td>
<td>residential</td>
</tr>
<tr>
<td>Number of houses</td>
<td>60</td>
</tr>
<tr>
<td>Type of houses</td>
<td>Detached, single- or two-family</td>
</tr>
<tr>
<td>Transformer rated power</td>
<td>400 kVA</td>
</tr>
<tr>
<td>Grid topology</td>
<td>radial for the simulation, meshed in real</td>
</tr>
<tr>
<td>Average distance between transformer and houses</td>
<td>415.5 m</td>
</tr>
<tr>
<td>Feeder cable types</td>
<td>Al 3x240, Al 3x150, Al 3x95 mm² (simulation), underground</td>
</tr>
<tr>
<td>Service cable types (between houses and feeder connection points)</td>
<td>Al 50 mm² underground</td>
</tr>
</tbody>
</table>
Braedstrup Grid Model

Ref: Erhan Demirok, AAU

Aalborg University: A One-Stop Shop to the Research on Smart-Grid
The possible solutions to voltage rise problem

1. Adapting tap positions of OLTC transformers (110/20kV)

2. Network expansion

3. Output power curtailment by PVs

4. Reactive power control by PVs

5. PV + storage system

Ref: Erhan Demirok, AAU
Main drawbacks of \textbf{P dependent Q control} methods:

- Absorbing unnecessary reactive power when the produced real power is consumed locally and the grid voltage is in the admissible range.
- Voltage sensitivities are not taken into consideration. The inverters with the least voltage sensitivity and with the highest voltage sensitivity may utilize the same amount of Q.

Drawback of \textbf{U dependent Q control} methods:

- The inverters closer to the transformer may not react to the overvoltage emergency condition that occurred at the end of feeders.

Following modifications are proposed:

- Power factor level of the nearest inverters to the transformer is increased at certain amounts for \textit{fixed cosφ} and \textit{cosφ(\textit{P})} methods.
- Reactive power amount of the inverters nearest to the transformer is forced to be higher for \textit{Q(U)} method.
Grid Interface Requirements - LV

Voltage Deviations

<table>
<thead>
<tr>
<th>Voltage Deviation</th>
<th>IEEE 1574</th>
<th>IEC 61727</th>
<th>VDE 0126-1-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage range (%)</td>
<td>Disconnection time (sec)</td>
<td>Voltage range (%)</td>
<td>Disconnection time (sec)</td>
</tr>
<tr>
<td>V < 50</td>
<td>0.16</td>
<td>V < 50</td>
<td>0.10</td>
</tr>
<tr>
<td>50 ≤ V < 88</td>
<td>2.00</td>
<td>50 ≤ V < 85</td>
<td>2.00</td>
</tr>
<tr>
<td>110 < V < 120</td>
<td>1.00</td>
<td>110 < V < 135</td>
<td>2.00</td>
</tr>
<tr>
<td>V ≥ 120</td>
<td>0.16</td>
<td>V ≥ 135</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency range [Hz]</th>
<th>Disconnection time [s]</th>
<th>VDE 0126-1-1</th>
<th>VDE-AR-N 4105</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.5 < f < 50.2</td>
<td>0.20</td>
<td></td>
<td>0.10</td>
</tr>
</tbody>
</table>

Obs. The purpose of the allowed time delay is to ride through short-term disturbances to avoid excessive nuisance tripping (LVRT)
LVRT for PV inverters
The objective of the laboratory setup was to establish a real time bi-directional data communication between the interconnected three-phase inverters and the master controller (Client) and show that the communication concept can be successfully applied in power substations.

Ref: MSc project, Ana maria Man and Vlad Muresan, AAU
Conclusion

• PV systems have had a significant increase in the last years

• Around 70GW of PV installed worldwide

• High PV penetration can become a challenge for LV grid operators, but solutions are there to overcome these limitations

• Grid support from PV inverters (Q and LVRT)

• Communication between inverters is a requirement in case of a Smart Grid
Laboratory Facilities

- Grid connected converter setups controlled by dSpace®
- PV inverter test setup 32kW (EN 50530, EN 61000)
- Residential microgrid setup (3 kVA)
- Linear PV simulator Regatron (32kW)
- California Instruments grid simulator (32kVA)
- Linear grid simulator (21kVA) with RTDS
- Class AAA Flash Sun simulator for PV modules - Spi Sun 4600 SLP from Spire
- SWIR Imaging (EL, PL) - Photonic Science InGaAs camera (640x512)
PhD/Industrial Courses - 2013

- Power Electronics for Renewable Energy Systems - in Theory and Practice (3 days)
- Photovoltaic Power Systems - in Theory and Practice (3 days)
- AC Microgrids - in Theory and Practice (2 days)
- DC Microgrids - in Theory and Practice (2 days)
- Power Quality in Microgrids - in Theory and Practice (2 days)
- Communications for Microgrids - in Theory and Practice (2 days)