GPS And Other GNSS Signals

GPS Signals And Receiver Technology MM9
Darius Plaušinaitis
dpl@gps.aau.dk
GPS Signals MM9-MM15

- MM9 | GPS and other GNSS signals
- MM10 | GPS signals - Code Generation and Carrier Generation
- MM11 | GPS signals - Acquisition of the GPS Signal
- MM12 | GPS signals - Carrier Tracking
- MM13 | GPS signals - Code Tracking
- MM14 | GPS signals - Navigation Data Decoding
- MM15 | GPS signals - Calculation of Pseudoranges and Positions

http://gps.aau.dk/educate/receiverTechnologyPart3.htm
Today's Subjects

• Spread Spectrum Technique
 – Correlation and other signal properties
 – PRN Codes

• GPS Signal
 – Codes, carriers, navigation data
 – Signal Bandwidth
 – Signal generator

• Overview of today's and future GNSS signals
The Problem

• How to receive 4 to 10+ signals?
 – Multiple systems (cross interference)
 – Multiple bands
 – Near-far problem
Direct-Sequence Spread Spectrum Features

• Allows many transmitters to share the same frequency band
• Signal cannot be received or detected if the spreading code is not known (depends on the signal design)
• Hard to jam (depends on the signal design)
• The spreading codes are also exploited to measure distance to the satellite
Properties Of A Single Chip

\[f(t) = \begin{cases}
1, & |t| \leq \frac{T}{2} \\
0, & \text{otherwise}
\end{cases} \]

\[r_f(\tau) = \begin{cases}
T \left(1 - \frac{\tau}{T}\right), & \text{for } |\tau| \leq T \\
0, & \text{otherwise}
\end{cases} \]
Some Ideas Behind DSSS

• Replace one data bit with a sequence of chips

\[
\text{mean}(\text{signal}) = 0.4270 \\
\text{sum}(\text{signal}) = 341.6046 \\
\text{mean}(\text{signal}) = 1.0069 \\
\text{sum}(\text{signal}) = 805.5447
\]
Properties Of A Random Sequence

- Number of pulses can be combined to generate sequences of pulses
- Amplitude of pulses is ±1 with equal probability
- Such random sequences have autocorrelation function similar to autocorrelation of a pulse

\[r_x(\tau) = \begin{cases}
1 - \frac{|\tau|}{T}, & \text{for } |\tau| \leq T \\
0, & \text{otherwise}
\end{cases} \]

\(R_f(\tau) \)

N = 7 (number of chips)
\(T_c \) – chip (pulse) duration
\(\tau \) – time
Pseudo Random Noise (PRN)

- Noise-like properties ➔ Very low cross-correlation with other signals
- PRN sequences (codes) are almost orthogonal ➔ High auto correlation only at 0 lag and very low cross correlation
- PRN (also called spreading code) is a sequence of random pulses. PRN can be reproduced, there is an algorithm to generate this random sequence
- PRN codes used in GPS belong to family of Gold codes and are created by shift registers of length n
Pseudo Random Noise (PRN)

• Length of PRN sequence is calculated as: $N_{DS} = 2^n - 1$

• Code length defines
 – How many unique codes can be generated
 – How small is code cross correlation

• It takes more time to acquire long codes

• Bit boundaries limit code length

• Higher chipping rates (wider bandwidth signals) yield better positioning measurements
Autocorrelation And Cross Correlation Of PRN Codes

- **Autocorrelation peak** (n=10 for GPS):

\[r_{kk,\text{peak}} = 2^n - 1 = 1023 \]

- **Cross correlation max:**

\[|r_{kk}| \leq 2^{(n+2)/2} + 1 \]

\[|r_{kk}| \leq 65 \]
This slide contents is only available to the listeners of our courses.
Memory Codes

- Galileo will use memory codes for some of its signals
- Memory codes are random sequences like PRN, but do not have a common code generator algorithm
- Memory codes are hard for reverse-engineering
- Memory codes are stored in receiver memory
 - Receiver memory is more expensive comparing to code generators
 - A lot of memory is required for a full system support
This slide contents is only available to the listeners of our courses
This slide contents is only available to the listeners of our courses
Code Division Multiple Access (CDMA) Systems

- The frequency spectrum of the signal is spread with a noise like code (sequence)
- All users transmit on the same frequency
- Spreading codes have very low cross-correlation and are unique for every user (low interference with other signals)
- Transmission bandwidth is much higher than information bandwidth (but several users can share the same band)
GPS Signals
GPS Signals

- Transmission frequencies:
 - L1 = 1575.42 MHz = 154 x 10.23 MHz
 - L2 = 1227.6 MHz = 120 x 10.23 MHz
 - (Upgrade) L5 = 1176.45 MHz = 115 x 10.23 MHz (for civil, SOL use)
 - (Upgrade) New military signal (M-code) and a new civil signal (L2CS)
GPS Signal Spectrum

This slide contents is only available to the listeners of our courses.
GPS Signal

- **C/A codes**
 - Chipping rate of 1.023 Mcps
 - Length of 1023 chips
 - Chip duration ~ 1µs, wave length ~ 300 m
 - Repeats every millisecond
 - 32 different sequences assigned to GPS satellites

- **P(Y) codes**
 - Chipping rate of 10.23 Mcps
 - Length ~ 10^{14} chips
 - Chip duration ~ 0.1µs, wave length ~ 30 m
 - Repeats every week
 - Anti-spoofing (Signal authentication)

- **L1 carrier**
 - ~ 0.1903 m
GPS Navigation Data

- Bit-rate of 50 bps (GPS C/A, 25 bps for L2C)
- Data contents:
 - Ephemerides, clock information (repeated every 30 sec.).
 - Satellite status, health and accuracy
 - Almanac
 - UTC conversion
 - Ionospheric information
 - Repeated every 12.5 minutes

More details in MM14…
GNSS Signal Generators
Block Diagram Of A GPS Signal Generator

- X 120: 1227.6 MHz
- X 154: 1575.42 MHz
- Limit: f_e = 10.23 MHz
- P(Y) code generator
- C/A code generator
- Data Information
- Data Generator
- 50 bps data
- 50 Hz
- 1000 Hz
- ±20
- 1227.6 MHz
- -6dB
- -3dB
- BPSK Modulator
- L2 Signal 1227.6 MHz
- L1 Signal 1575.2 MHz
- Switch
- C/A code + data
- P(Y) code + data
- P(Y) code
GPS Signal

- Signal transmitted by a GPS satellite k is

$$s_k^k(t) = \sqrt{2P_C} \left(C_k^k(t) \oplus D_k^k \right) \cos(2\pi f_{L1} t)$$
$$+ \sqrt{2P_{PL1}} \left(P_k^k(t) \oplus D_k^k \right) \sin(2\pi f_{L1} t)$$
$$+ \sqrt{2P_{PL2}} \left(P_k^k(t) \oplus D_k^k \right) \sin(2\pi f_{L2} t)$$

- **Note:**
 - L2 can be configured to transmit P(Y) code without data or to transmit C/A signal with data
 - New generation satellites are transmitting L2C civil signal on L2 and new M code signals on L1 and L2
 - Also L5 signal is being deployed ("SVN49", 2009)
Spreading Operation

- Data signal is multiplied by a PRN code (XOR operation for binary signals)
- The result signal has PRN like properties
- An example of a spreading operation and the BPSK modulation:

![Diagram](Diagram.png)

1 bit period

Data bits

DSSS code chips

Data * DSSS code

Carrier

Carrier after BPSK

1 chip period
This slide contents is only available to the listeners of our courses
Galileo Signal

• Due to Galileo signal complexity only signal on L1 is shown

\[
s_{L1}^k(t) = \frac{\sqrt{2}}{3} \cdot \left(e_{E1-B}^k(t) - e_{E1-C}^k(t) \right) \cdot \cos(2\pi f_{L1} t) \\
- \frac{1}{3} \cdot \left(2 \cdot e_{E1-A}^k(t) + e_{E1-A}^k(t) \cdot e_{E1-B}^k(t) \cdot e_{E1-C}^k(t) \right) \cdot \sin(2\pi f_{L1} t)
\]

\[
e_{L1-A}^k(t) \quad \text{content is classified} \quad \text{PRS}
\]
\[
e_{L1-B}^k(t) = C_{L1-B}^k \cdot sc_{L1-B} \cdot D_{L1-B}^k \quad \text{Data}
\]
\[
e_{L1-C}^k(t) = C_{L1-C}^k \cdot sc_{L1-C} \quad \text{Pilot}
\]
Other GNSS Signals
WAAS And EGNOS

- Provide facilities to obtain better position accuracy by:
 - Correction of ephemerides errors
 - Providing more accurate ionospheric model
- GPS C/A type signals (same modulation, frequency and spreading codes)
- Much higher data rate (500sps - 250 bps)
- Data message structure is different from GPS
- Forward Error Correction (MM14)
- Due to this data rate one symbol in SBAS contains only 2 PRN codes, while in GPS one bit contains 20 PRN codes
- Much lower Doppler (<210Hz instead of 5kHz)
Galileo

- More signals transmitted on each frequency (comparing to today’s GPS)
- Longer spreading codes
- Data less signals
- BOC modulation
- Forward Error Correction (MM14)
- Block Interleaving (bit scattering) - to make the long data losses manageable (MM14)
- Uplink emergency signal
- Signal authentication for SOL users
BOC Signal

- It is derived by mixing of the data/code signal and a sub-carrier (a square wave for BOC)
- The "traditional" BPSK spectrum is divided into two parts
Galileo Spectrum

- The Galileo spectrum is made to minimize interference to GPS by use of BOC modulation
- Wider signal bandwidth can yield a better positioning performance
- The frequency of the sub-carrier defines distance between main peaks = \(2f_{\text{subcarrier}}\) Hz

Galileo will use an enhanced version of BOC(1,1) based signal. Figure shows only BOC(1,1) signal.
GLONASS

- Two frequencies
- Separate carrier frequency per satellite.
- 0.511 Mcps civil signal and 5.11 Mcps military spreading codes
- 12 satellites operating + 4 GLONAS-M (2006)
- New generation (GLONAS-M): upgraded signals, intersatellite links, many other improvements
- Next generation GLONAS-K (2005 - 2010)
Spectrum of All GNSS Signals/Carriers

This slide contents is only available to the listeners of our courses
List of all GPS And Galileo Signals and Parameters

This slide contents is only available to the listeners of our courses
• http://www.navcen.uscg.gov/gps/modernization/
• http://gps.faa.gov/Programs/WAAS/waas.htm
• http://www.esa.int/esaNA/galileo.html
• http://www.esa.int/esaNA/egnos.html
• http://www.glonass-ianc.rsa.ru/

Refer to Interface Control Documents (ICD) for detailed description of the GNSS signals
Questions and Exercises