Today’s Subjects

• GPS Signal Acquisition
 – Doppler frequency bins

• Acquisition methods:
 – Serial Search Acquisition
 – Parallel Frequency Space Search Acquisition
 – Parallel Code Space Search Acquisition

• Coherent acquisition
Acquisition Process
The Problem

• The GNSS signal can be received only when:
 – The frequency of the local carrier replica matches the frequency of the carrier in the received signal
 – The PRN replica code is well aligned in time to the PRN code in the received signal

• There are number of parameters, that influence how precisely these signals must mach

```
Incoming signal → \times \rightarrow \times \rightarrow \text{Integrator} \rightarrow (\cdot)^2 \rightarrow \text{Correlation result}
```

- Carrier wave replica
- PRN code replica
GPS Signal Acquisition

• **Purpose of acquisition:**
 – Find satellites (signals) visible to the receiver
 – Estimate coarse value for C/A code phase
 – Estimate coarse value for carrier frequency
 – Refine carrier search result if it is needed for the chosen tracking (receiver) design

• **Acquisition in high sensitivity receivers might also find bit boundaries**

• **The search space can be reduced if the receiver has some apriory knowledge about visible GNSS signals**
Carrier Frequency Acquisition
Doppler Shift

• ~5kHz maximum Doppler shift is created due to satellite motion (when satellite is moving directly towards/away from the receiver)

• The Doppler value and sign depend on the angle between signal line of sight vector and satellite’s motion vector

• Receiver motion also creates a Doppler offset: 1.46Hz per each 1km/h

• Again, the Doppler value and sign depend on the angle between signal line of sight vector and this time receiver motion vector
Doppler Shift

- Receiver oscillator offset will also cause a Doppler effect: 1.575kHz/1ppm
- Offsets of oscillators for GPS are typically from ±1ppm to ±3ppm, but ±0.5ppm devices are also introduced (2008)

- Therefore the total maximum Doppler shift is roughly +/-10kHz
- Receiver must search in this 20kHz band for visible GPS (GNSS) signals
How Carrier Acquisition Works

Correlation

Incoming carrier

Generated carrier
Doppler Frequency Bins

• The whole frequency search band is divided into frequency bins
• The size of a frequency bin depends on the desired integration time and the desired maximum SNR loss due to frequency mismatch
• Commonly used Doppler frequency bin size for acquisition is 500Hz
• This gives a total of 41 different frequencies to be tested for a band of 20kHz
C/A Code Acquisition
How Code Acquisition Works

Incoming code

Generated code

Correlation
The step depends on desired correlation (SNR) loss due to missaligned spreading code phases.

Typical step for GPS is $\frac{1}{2}$ of a chip.
Length Of Signal For Acquisition

• Minimum 1 spreading code sequence should be used, else the PRN properties are degraded: min 1ms for GPS

• The total signal length should be m*codeLength, where m is an integer >0

• When m is >1
 – The SNR is improved
 – Data bit transitions can destroy integration result
 – Acquisition takes longer because:
 • The signals to be process are longer
 • The frequency step must be reduced – more bins to check
This slide contents is only available to the listeners of our courses
Acquisition Techniques
Serial Search Acquisition

- A straight-forward method of acquisition
 - Search all possible combinations of code phase and carrier frequency

![Diagram of serial search acquisition process](image-url)
Output From A Serial Search Acquisition

No GPS signal for given PRN

GPS signal is present for given PRN
Serial Search Acquisition

- Total number of combinations to search:
 - 41 different carrier frequencies
 - 2046 different C/A code phases
 - Total $41 \times 1023 \times 2 / 2 = 41943$ combinations (bins)

- The calculations for each of the combinations are quite simple therefore it is easy to implement in hardware

- The high number of combinations makes the method very slow, especially for high sensitivity signal acquisition
 - Multiple correlators to increase acquisition speed
Parallel Frequency Space Search Acquisition

- Lower the number of code phase and carrier frequency combinations to be searched:
 - Parallelize one of the two search dimensions – frequency
 - Use a Fourier transform to detect carrier in a single step
Output From Parallel Frequency Space Search Acquisition

No GPS signal for given PRN

GPS signal is present for given PRN
Parallel Frequency Space Search Acquisition

- Total number of combinations to search: \(1023 \times 2 / 2\)
- Each of the combinations is computationally demanding because of the use of the Fourier transform
- The efficiency of this method depends on the speed of the used Fourier transform implementation
- Frequency search resolution depends on signal length: the longer the signal, the finer is the resolution
Parallel Code Space Search Acquisition

- Parallelizes the code space dimension – use circular correlation
Output From Parallel Code Space Search Acquisition

No GPS signal for given PRN

GPS signal is present for given PRN
Parallel Code Space Search Acquisition

• Total number of combinations to search: 41
• Each of the combinations is very computationally demanding because of the intense use of a Fourier transformations
• The efficiency of this method depends on the speed of the used Fourier implementation
• Method can yields high code phase resolution (one sample res.) per single search step
Acquisition Of Weak Signals
Weak Signal Acquisition

• Results from several search cycles are combined to detect weak signals
• The process is an extension of the basic acquisition:
 – Coherent integration period is increased
 – Non-coherent integration period is increased

This slide contents is only available to the listeners of our courses
Weak Signal Acquisition

- Weak signal acquisition increases the number of search steps
- Parallel hardware operations are used to increase search speed
- Bit transition is a problem
- Carrier frequency error can destroy the integration result
- Next generation GNSS signals will have longer spreading codes and data less signals to aid weak signal acquisition (and tracking)
Non-Coherent Acquisition

- Non-coherent acquisition snapshot/video was made by student group 1049 (2005)
Signal Detectors
Signal Detectors

- Compare main peak to noise floor
 - TH can be precomputed
 - Noise floor is not constant

- An alternative solution is to compare main peak to the second highest peak, which is not closer than one chip to the main peak

This slide contents is only available to the listeners of our courses
Questions and Exercises