ABSTRACT
We formulate a class of adaptive heuristics for combinatorial optimization. Recently proposed methods such as simulated annealing, probabilistic hill climbing, and sequence heuristics, as well as classical perturbation methods are all members of this class of adaptive heuristics. We expose the issues involved in using an adaptive heuristic in general, and simulated annealing, probabilistic hill climbing, and sequence heuristics in particular. These issues are investigated experimentally.

Key words and phrases
Adaptive heuristics, Simulated annealing, Monte Carlo methods, optimization, perturbation functions, design automation

1. HEURISTIC METHODS
1.1. General Adaptive Heuristics
Simulated annealing is a general purpose combinatorial optimization technique that has been proposed by Kirkpatrick et al. [KIRK83]. This method is an extension of a Monte Carlo method developed by Metropolis et al. [METR53], to determine the equilibrium state of a collection of atoms at any given temperature T. Since the method was first proposed in [KIRK83], much research has been conducted on its use and properties. Some relevant references are: [BHASS85], [COH083a], [COH083b], [GOLD84], [JEPS83], [ARAGSS], [KIRK83], [LUND83], [NAH85], [ROKE84], [SECH84], and [VECC83]. Most of the papers that report on an application of the method deal with problems that arise in the CAD area. This is not surprising as most CAD problems are known to be NP-complete. [SAHNS0]. Hence, CAD problems are likely targets of solution by heuristic methods.

Simulated annealing as proposed by Kirkpatrick et al., [KIRK83], is a special case of a wider class of adaptive heuristics for combinatorial optimization. This wider class is formulated below. The term adaptive, in this context, simply means that some of the parameters of the heuristic may be modified. This modification may be done by the algorithm itself using some learning mechanism or may be done by the user using his/her own learning mechanism.

Consider any optimization problem. Suppose we wish to find a solution that minimizes the objective function h() subject to certain constraints (a maximization problem may be solved by minimizing the negative of the objective function). Solutions that satisfy the constraints are called feasible solutions and a feasible solution with minimum h() value is called an optimal solution. The optimal value of h() is its minimum value. The general form of an adaptive heuristic to find a feasible solution with value close to optimal takes the form shown in Figure 1. The significance of the variables, functions, and procedures used in this algorithm are described below:

procedure GeneralAdaptiveHeuristic:
{General form of an adaptive heuristic for combinatorial optimization}
S := S0; {initial solution}
Initialize heuristic parameters;
repeat
 repeat
 NewS := perturb (S);
 if accept (NewS, S) then S := NewS;
 until "time to adapt parameters";
 AdaptParameters;
 until "terminating criterion";
end; {GeneralAdaptiveHeuristic}

Figure 1 The general adaptive heuristic
S This is the current solution to the optimization problem. Its initial value, S0, may be any feasible solution. Generally, S0 is either generated through some randomizing mechanism, i.e., a random feasible solution is used, or it is generated using some other heuristic for the problem being solved.
perturb This is a function that generates a new feasible solution from the current solution S.
accept This is a Boolean valued function that determines whether or not the new solution NewS should become the current working solution. accept is generally a function of the h() (i.e., optimization function) values of S and NewS and of the heuristic parameters.
AdaptParameters This procedure adapts the heuristic parameters. These parameters may include such things as the perturbation function, perturb, the acceptance function, accept, the current working solution, S, and even the criterion that determines when it is time to adapt the heuristic parameters.

The generality of the general adaptive heuristic is readily seen from the observation that the specification of Figure 1 makes no mention of the specific problem to be solved. To use the method, we need to be able to generate an initial feasible solution, be able to perturb a feasible solution and create another feasible solution, and be able to evaluate the objective function at these solutions. We show how several other heuristic classes may be obtained from the general adaptive heuristic of Figure 1.
1.2. Classical Heuristics

Classical heuristics such as pairwise exchange, [SAHN85], are nonadaptive and accept a perturbation only if it improves the value of the objective function $h()$. These are trivially modeled by the general adaptive heuristic described above by making suitable selections for the heuristic parameters [NAHA86a]. For pairwise exchange perturbation function this results in the classical pairwise exchange heuristic of Figure 2.

```plaintext
procedure PairwiseExchangeHeuristic;
{General form of a pairwise exchange heuristic}
  $S := S_0$ [initial solution]
  repeat
    $\text{News}$ is obtained from $S$ by making a pairwise exchange;
    if $h(\text{News}) < h(S)$ then $S := \text{News}$;
    until $S$ can be improved no further by a pairwise exchange;
end; {of PairwiseExchangeHeuristic}
```

Figure 2 A pairwise exchange heuristic

Using a pairwise exchange heuristic is quite straightforward as S_0 is the only unspecified parameter.

1.3. Simulated Annealing

The class of simulated annealing heuristics proposed by Kirkpatrick et al. [KIRK83], is obtained from the general adaptive heuristic of Figure 1 by making the following parameter selections:

(1) The acceptance function, accept, has the form:

\[
\text{if } h(\text{NewS}) < h(S) \text{ or } \text{random} < e^{\frac{h(S) - h(\text{NewS})}{T}} \text{ then accept} := \text{true}
\]

else accept := false;

where T is a heuristic parameter called "temperature" and random is a uniformly generated pseudo-random number in the range $[0,1]$.

(2) The "time to adapt parameters" criterion is the number of iterations of the inner repeat loop that have been performed since the last adaptation.

(3) The procedure AdaptParameters does the following:

The "temperature", T, used in the acceptance function is updated to αT for some constant α, $0 < \alpha < 1$ and the number, iterations, of iterations of the inner repeat loop that are to be performed before the next adaptation is changed to β iterations. β is a constant that is at least 1.

(4) The "terminating criterion" is when we have used up the amount of computing time we wish to spend.

Substituting these selections into Figure 1, we obtain the form of the simulated annealing heuristic shown in Figure 3.

Simulated annealing is simpler to use than the general adaptive heuristic as there are fewer decisions to be made. We essentially need to determine the following:

(1) How is S_0 to be generated?

(2) What are the values of T_0, α, β?

(3) How much computer time is the heuristic allowed? These choices have a significant impact on the quality of the solutions produced (see [NAHA85]). Determining optimal choices for these is not possible as the optimal choice depends not only on the particular problem being solved but also on the particular instance being solved. The time required to optimize the choices is, perhaps, better spent running the algorithm for a longer time.

The simplicity and generality of simulated annealing coupled with the development of convergence proofs (KIRK83) and the general adaptive heuristic described above by making suitable selections for the heuristic parameters [NAHA86b] have resulted in the widespread use of the simulated annealing heuristic in the design of algorithms for CAD applications. Indeed, hardware accelerators for simulated annealing have been constructed by major manufacturers of CAD tools. It is our view that this effort is premature. This is not because we do not believe that simulated annealing is a valuable contribution to the field of heuristic methods but because we believe that several issues surrounding it haven't, as yet, been fully studied.

First and foremost, one must realize that simulated annealing is just one instance of a more general class of adaptive heuristics. Are there other instances that can be expected to perform better in practice? The fact that convergence to an optimal solution can be established under certain restrictive assumptions is of little practical value. Such proofs can be provided for several heuristic methods that one would not consider for general use. For example, consider the random sampling heuristic of Figure 4. No mathematical sophistication is required to realize that this does, in fact, converge to an optimal solution no matter which instance of which problem is being solved. The only requirement is that the procedure used to generate a random feasible solution be able to generate all feasible solutions.

```plaintext
procedure SimulatedAnnealing;
{General form of simulated annealing}
  $S := S_0$ [initial solution]
  $T := T_0$ [initial temperature]
  iterations := $i_0$ [initial number of iterations of inner loop, $\geq 1$]
  repeat
    $\text{News} := \text{perturb} (S)$;
    if $(h(\text{News}) < h(S))$ or $(\text{random} < e^{\frac{h(S) - h(\text{News})}{T}})$
      then accept := true
      else accept := false;
    until inner loop has been repeated iterations times;
    $T := \alpha * T$; iterations := $\beta$ * iterations
    until "out of time"
end; {of SimulatedAnnealing}
```

Figure 3 Simulated annealing

On the surface, this heuristic has several advantages over simulated annealing. It is much simpler than simulated annealing (we need only determine the amount of computer time available) and its convergence proof much easier. Despite these apparent advantages of the random sampling method, it is not a recommended heuristic for combinatorial optimization because in practice, it does not perform well relative to other heuristics.

While we can prove that both simulated annealing and random sampling converge to optimal solutions, we cannot tell when either has reached such a solution. Two general heuristic methods that overcome this difficulty are obtained by, respectively, adapting backtracking and branch-and-bound [HOR078]. The adaptation is quite straightforward as both these methods essentially search relevant parts of the solution space in a structured manner. In the adaptation, rather than terminate when the search is complete, we terminate when we have either used up the allotted time or the search is complete (whichever occurs first). Again, convergence is guaranteed by the fact that when enough time is provided, the algorithm is able to search (explicitly or implicitly) the entire solution space. Further, when this happens, the algo-

Paper 16.1 294
algorithm is in a position to say that the current solution is indeed an optimal solution. Despite these positive aspects of the adapted backtracking and branch-and-bound heuristics, we are not in a position to recommend these methods as adequate empirical evidence regarding the rate of convergence is unavailable at this time. We propose to investigate this possibility in our future research.

Whether a heuristic is good or not depends on its performance relative to other heuristics for the same problem and not on whether a convergence proof can be provided. The performance of a heuristic must take into account both the quality of the solutions produced and the amount of computational resources required. If the required computational resources are not taken into account, then it is impossible to justify the acceptance of a suboptimal solution when an optimal one can be found in a finite (but large) amount of time.

Most of the early experimental results that were reported in the literature failed to compare simulated annealing with other heuristics that are known to be effective for the problems they are designed to solve. When such a comparison was made ([NAHASS], [ARRAG85]), it was found that heuristics tailored to a specific problem usually do not generate an optimal solution. Despite these positive aspects of simulated annealing, we are not in a position to recommend these methods as adequate empirical evidence regarding the rate of convergence is unavailable at this time. We propose to investigate this possibility in our future research.

The probabilistic hill climbing heuristics proposed by Romeo et al. ([ROME48]), are obtained by generalizing simulated annealing to allow for the possibility of other temperature update methods, other functions than the exponential function used in accept, and other criteria to determine when the inner loop termination criteria and the temperature are to be changed. This generalization is given in Figure 5.

procedure ProbabilisticHillClimbing;
{General form of probabilistic hill climbing heuristics}
S := S₀; {initial solution}
T := T₀; {initial temperature}
repeat
repeat
NewS := perturb (S);
if (h (NewS) < h (S)) or (random < g (h (S), h (NewS), T))
then accept := true
else accept := false;
until "time to terminate inner loop";
update T and the inner loop termination criterion;
until "out of time";
end; {of ProbabilisticHillClimbing}

Figure 5 Probabilistic hill climbing

As pointed out earlier, convergence proofs are nice but of little value in justifying a heuristic. For a heuristic, "the proof of the pudding is in the eating." The success stories are an indication that the simulated annealing approach of occasionally accepting bad perturbations (i.e., ones with higher objective function value) has some merit. There are, however, a large number of ways in which this can be accomplished. Nahar, Rabani, and Bhangowitz ([NAHAR85]) studied 20 different acceptance functions and discovered that many of these often outperform the simulated annealing acceptance function. The studies reported in [NAHASS] lead us to formulate yet another specialization of the class of general adaptive heuristics. This class is called the "sequence oriented heuristics" and is described in the next section.

1.5. Sequence Heuristics

The best results obtained in [NAHASS] used the following strategy: accept a new solution NewS with h (NewS) ≥ h (S) if the last k perturbations on S failed to generate a NewS with h (NewS) < h (S). So, bad perturbations are accepted only if we have been unable (over a sequence of attempts) to find a good perturbation. This method may be generalized to obtain the algorithm of Figure 6.

procedure SequenceHeuristic:
{Sequence oriented heuristic}
S := S₀; {initial solution}
L := L₀; {initial sequence length}
length := 0; {current length of bad perturbation sequence}
repeat
if h (NewS) < h (S) then
end; {of SequenceHeuristic}

Figure 6 Sequence heuristic

In the sequence heuristic used in [NAHASS], the procedure UpdateS keeps track of the best solution found so far and also updates S to perturb (S). The procedure UpdateLength is a null procedure (i.e., it does nothing). In a more general application of the sequence heuristic, UpdateLength could increase the value of L to (say) L + β or βL.

1.6. Issues

There are several issues that must be resolved before the general adaptive heuristic or one of its adaptive specializations (i.e., simulated annealing, probabilistic hill climbing, or sequence heuristics) may be used. In view of the large amount of computing time being spent to obtain solutions via simulated annealing, the possibility of incorporating some learning into the adaptive mechanisms of these heuristics appears to be worth studying. Support is lent to this recommendation by the results of [NAHASS] which show that prior determination of the constants α and β in simulated annealing and the restriction to the simple g () function of simulated annealing does not lead to an efficient implementation. Further, experiments with near optimal implementations using different g () functions showed that on any given instance any of the studied g () functions could produce the best results. We shall not study the learning issue here. The issues we shall examine are listed below.

1. Adaptive heuristic or tailored heuristic

Are adaptive heuristics a substitute for well thought out heuristics that are tailored to the specific problem to be solved? Our experiments show that custom heuristics often generate better solutions than those generated by adaptive heuristics and do so using a fraction of the computing time.

2. Choosing S₀

We study the effect of selecting S₀ by some random mechanism versus using a solution generated by some "clever" heuristic. Our experiments indicate that better solutions are obtained when one starts with a good S₀.
(3) Choice of the perturbation function

One might expect that the performance of an adaptive heuristic will be affected by the perturbation function that is used. Since there appears to be no experimental validation of this thesis, we conducted such a study. Our studies confirm this thesis.

(4) Simulated annealing vs sequence heuristic

The sequence heuristic is slightly easier to use than simulated annealing as one fewer parameter needs to be selected. It is also more elegant as it does not contain the "artificial" notion of a temperature. The results reported in [NAHA85] indicate that it is superior to simulated annealing. We provide additional evidence to support this claim.

2. PERTURBATION FUNCTIONS

Our experiments were confined to the three problems: optimal linear arrangement, traveling salesman, and circuit partitioning. These are described in later sections. It is sufficient to know that the first two of these require us to find an optimal permutation of \(n \) objects while the last requires us to optimally partition a set of \(n \) objects into two subsets. The perturbation functions we experimented with are described below for the two categories of problems we experimented with: permutation problems and partition problems. The current solution \(S \) is described by a permutation, \(\sigma \), of the \(n \) objects. The current solution, \(S \), for a partition problem is described by the two partitions \(A \) and \(B \).

1. Single Move (SM)

For a permutation problem an object is selected randomly and moved to a random location in \(\sigma \). For example, if \(\sigma = (3, 5, 1, 2, 4) \) and we select object 2 and move it to position 1, we get the permutation \((2, 3, 5, 1, 4) \). In the case of a partition problem, two elements are selected at random. One from \(A \) and the other from \(B \). The element selected from \(A \) is moved to \(B \) and that selected from \(B \) is moved to \(A \).

2. Pairwise Exchange (PE)

In the case of a permutation problem, \(\sigma \) is perturbed by interchanging the positions of two randomly chosen objects. In the case of a partition problem, two elements are selected at random. One from \(A \) and the other from \(B \). The element selected from \(A \) is moved to \(B \) and that selected from \(B \) is moved to \(A \).

3. Cycle of Length 3 (C3)

This perturbation strategy is used only for permutation problems. Three objects are chosen at random. Let \(i, j, \) and \(k \) be the three objects selected. \(i \) is moved to the position in \(\sigma \) currently occupied by \(j \); \(j \) to the position occupied by \(k \); and \(k \) to that formerly occupied by \(i \). As can be seen, this is a natural extension of pairwise exchange to the case of three elements.

4. Two Bond Exchange (TBE)

This is the strategy used in the Lin-Kernighan heuristic for the traveling salesman problem ([VIN73]). We use this on permutation problems only. Let \((s_0, s_1, \ldots, s_n) \) be the current permutation \(\sigma \). We say there is a bond between \(s_i \) and \(s_j \), \(s_k \) and \(s_l \), \(s_m \) and \(s_p \), etc. In the two bond exchange perturbation strategy, two bonds are chosen at random and broken. These are replaced by the two unique bonds required to rejoin the permutation (and create a new one). For example, if the bonds \((s_i, s_{i+1}) \) and \((s_j, s_{j+1}) \) are broken, for some \(i \) and \(j \), \(i < j < n \), the new bonds are \((s_i, s_j) \) and \((s_{i+1}, s_{j+1}) \). The net result is that the permutation segment between \(s_i+1 \) and \(s_j \) is reversed. The perturbed permutation is: \((s_0, \ldots, s_i, s_j, s_{j-1}, \ldots, s_{i+1}, s_{j+1}, \ldots, s_n) \).

5. Pair + Single Move (P+SM)

This is used by us on subset problems alone. First, a randomly selected object from subset \(A \) is exchanged with a randomly selected object from subset \(B \) (i.e., a pairwise exchange is performed). Then, an object is selected from one of \(A \) and \(B \) and moved to the other subset (i.e., a single move is performed).

6. Pair + Pair (P+P)

As in the case of the P+SM heuristic, the P+P heuristic is used on subset problems alone. In this heuristic, a randomly selected pair of objects (one from \(A \) and the other from \(B \)) are interchanged. This is done once again to get the perturbed solution.

3. EXPERIMENTAL RESULTS

3.1. OPTIMAL LINEAR ARRANGEMENT (OLA)

In the optimal linear arrangement (OLA) problem, we are given \(n \) circuit elements (cells, boards, chips, etc) and a set of nets which interconnect the circuit elements. For any linear ordering of these \(n \) elements, the maximum number of nets that cross between any pair of adjacent elements is called the density of the linear arrangement. We are required to find a linear ordering with minimum density. This problem is identical to the board permutation problem studied in [GOT77], and [COH83]. The problem also arises in the placement of standard cells and gate arrays ([KANC89], and in the ordering of via columns in single row routing ([RAGH84] and [TING78]).

We generated 10 random instances of the optimal linear arrangement problem. Each instance consisted of 50 circuit elements and 500 two point nets. For each of the 10 instances, a starting solution \(S_0 \) was obtained by generating a random permutation. The sum of the densities of these 10 permutations was 2518. The greedy heuristic proposed by Goto, [GOT77], was first used to obtain linear arrangements for the 10 instances. The greedy heuristic of [GOT77] required approximately 18 seconds per instance (all experiments reported in this paper were conducted on an Apollo DN320 workstation, all programs were coded in Pascal) and produced solutions whose density summed to 658 less than that for the 10 random solutions.

We experimented with three parameter sets for simulated annealing. In all cases, the temperature update constant \(\alpha \) was set to 0.95. The three parameter sets are described below:

Parameter Set 1 (PS1)

\(T_0 = 10 \), initial number of iterations of inner repeat loop = 30, multiplicative change factor \(\beta = 1.02 \). Using the above \(\alpha \) of 0.95, the temperature reduced to 0.87 (on the average) when the heuristic terminated.

Parameter Set 2 (PS2)

\(T_0 = 10 \), initial number of iterations of inner repeat loop = 150, multiplicative change factor \(\beta = 1.02 \). The average value of the temperature at termination was 4.63.

Parameter Set 3 (PS3)

\(T_0 = 2.5 \), initial number of iterations of inner repeat loop = 150, multiplicative change factor \(\beta = 1.02 \). At the time of termination, \(T \) had the value 1.16 (on the average).

Figure 7 gives the reduction in the sum of densities accomplished by each of the three variations of simulated annealing described above using each of the four perturbation strategies described earlier for permutation problems. The times given in the TIME column are times per instance.

Observations

(1) It is striking to observe that none of the 12 simulated annealing strategies could match the performance of Goto’s greedy heuristic (658).

(2) Further, as anticipated, the choice of the perturbation function has a significant effect on the performance of simulated annealing.

Paper 18.1

296
As pointed out in other studies (e.g., [NAHA85]), the initial temperature and the temperature update constant α have a significant impact on the performance of simulated annealing.

For the sequence method, three parameter sets were used. In all cases, UpdateLength sets length to βLength (early experiments with β-length revealed this to be inferior to βLength). The three parameter sets are characterized below:

<table>
<thead>
<tr>
<th>TIME</th>
<th>PS1</th>
<th>PS2</th>
<th>PS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>sec</td>
<td>SM</td>
<td>PE</td>
<td>C3</td>
</tr>
<tr>
<td>180</td>
<td>271</td>
<td>398</td>
<td>369</td>
</tr>
<tr>
<td>360</td>
<td>363</td>
<td>392</td>
<td>430</td>
</tr>
<tr>
<td>540</td>
<td>448</td>
<td>506</td>
<td>496</td>
</tr>
<tr>
<td>720</td>
<td>511</td>
<td>550</td>
<td>559</td>
</tr>
<tr>
<td>900</td>
<td>547</td>
<td>580</td>
<td>578</td>
</tr>
</tbody>
</table>

PS1: $L_0 = 150$, $\beta = 1$ (in UpdateLength), and UpdateS updates S to perturb (S).

PS2: $L_0 = 150$, $\beta = 1$, and UpdateS updates S to a random permutation rather than one obtained by using the current permutation strategy on S.

PS3: $L_0 = 150$, $\beta = 1.02$, and UpdateS updates S to perturb (S).

At the time of termination, the sequence length had increased to 175 on the average.

Figures 8 gives the reduction in the sum of densities accomplished by each of the three variations of the sequence method described earlier for permutation problems.

<table>
<thead>
<tr>
<th>TIME</th>
<th>PS1</th>
<th>PS2</th>
<th>PS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>sec</td>
<td>SM</td>
<td>PE</td>
<td>C3</td>
</tr>
<tr>
<td>180</td>
<td>440</td>
<td>531</td>
<td>537</td>
</tr>
<tr>
<td>360</td>
<td>488</td>
<td>589</td>
<td>575</td>
</tr>
<tr>
<td>540</td>
<td>512</td>
<td>608</td>
<td>598</td>
</tr>
<tr>
<td>720</td>
<td>540</td>
<td>618</td>
<td>620</td>
</tr>
<tr>
<td>900</td>
<td>554</td>
<td>652</td>
<td>637</td>
</tr>
</tbody>
</table>

PS1: $L_0 = 40$, initial number of iterations of inner repeat loop = 30, multiplicative change factor $\beta = 1.02$. The average final value of T was 0.60 for this parameter set.

As a benchmark heuristic, we used the partitioning heuristic of Lin (KERN70). This modified to account for the area of circuit elements directly in the objective function rather than by replacing each element by many (as suggested in [KERN70]). 10 instances, each having 50 elements and 500 nets were used. These were randomly generated. The cost of the 10 random starting solutions for these instances was 2974. The modified heuristic ([KERN70]) obtained a cost reduction of 1100 and required an average of 3.3 seconds per instance.

For each of the three simulated annealing variations used, we set α (the temperature update constant) to 0.08. The remaining characteristics were:

3.2. CIRCUIT PARTITION

The cell partition problem is one of the problems reported in [KIRK83]. The input to this problem is quite similar to that for NOLA. The essential difference is that each circuit element (called a cell) has a size associated with it. The cells are to be partitioned into two groups A and B. Let $Nets$ be the number of nets that are in both A and B. The objective is to find a partition (A,B) that minimizes $r(A,B) = Nets + \DeltaSize$. In this measure, Nets and \DeltaSize are weighted equally. Kirkpatrick et al. assigned different weights to these two components.

Observations

1. The improvements obtained by the sequencing method are clearly superior to those obtained by simulated annealing.

2. In the case of the OLA problem, simulated annealing is not effective in obtaining improved solutions.

3. The perturbation function with best performance for the sequence method is pairwise exchange. However, when we started from a random solution, the cycle of length 3 perturbation scheme was best.
PS2

$T_0 = 40$, initial number of iterations of inner repeat loop = 150, multiplicative change factor $\beta = 1.02$. For this parameter set, the average final value of T was 3.0.

PS3

$T_0 = 15$, initial number of iterations of inner repeat loop = 150, multiplicative change factor $\beta = 1.02$. In this case, the average final value of T was 1.15.

The cost reductions obtained by simulated annealing when S_0 is a randomly generated partition are given in Figure 11.

Observations

(1) As in the case of simulated annealing, the sequence method was unable to match the performance of the Kernighan-Lin heuristic. Unlike our tests with the other two problems, simulated annealing outperformed the sequence method.

(2) Both the parameter set and the perturbation function have some effect on the quality of the solutions produced. This effect is less noticeable as the algorithms are run for more and more time.

The three parameter sets used with the sequence method are described below:

PS1

$L_0 = 150$, $\beta = 1$ (in UpdateLength), and UpdateS updates S to perturb (S).

PS2

$L_0 = 150$, $\beta = 1$, and UpdateS updates S to a random permutation rather than one obtained by using the current permutation strategy on S.

PS3

$L_0 = 150$, $\beta = 1.02$, and UpdateS updates S to perturb (S). The average final value of the sequence length was 2000.

Figure 12 gives the cost reductions obtained when the sequence method is used and S_0 is a randomly generated partition.

<table>
<thead>
<tr>
<th>TIME</th>
<th>PS1</th>
<th>PS2</th>
<th>PS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>sec</td>
<td>SM</td>
<td>PE</td>
<td>PE+SM</td>
</tr>
<tr>
<td>180</td>
<td>840</td>
<td>980</td>
<td>938</td>
</tr>
<tr>
<td>200</td>
<td>830</td>
<td>940</td>
<td>925</td>
</tr>
<tr>
<td>540</td>
<td>898</td>
<td>1051</td>
<td>1014</td>
</tr>
<tr>
<td>720</td>
<td>899</td>
<td>1057</td>
<td>1017</td>
</tr>
<tr>
<td>900</td>
<td>910</td>
<td>1057</td>
<td>1024</td>
</tr>
</tbody>
</table>

4. CONCLUSIONS

We have formulated a class of general adaptive heuristics and have pointed out the possibility of introducing learning capabilities into heuristics. Some of the additional issues related to the use of general adaptive heuristics have been pointed out. A thorough empirical study of the performance of simulated annealing relative to that of the sequence method was carried out. Both methods are similar in that they both make random perturbations and both accept good as well as bad perturbations. In addition, a comparison with heuristics designed to solve a specific problem was also conducted. With the respect to the issues raised in Section 1.6, our conclusions are:

(1) A general randomization heuristic (such as simulated annealing or the sequence method) is not a substitute for a well designed heuristic that is tailored to the specific problem being solved. However, by extrapolating our experimental results, we expect that the randomization heuristics would have matched or exceeded the performance of the tailored heuristics if sufficiently more time was provided.

(2) For some problems, a good starting solution may yield better results than a random starting solution. Once again, we expect that if the randomization heuristics are run for a longer time than allowed in our tests, then random starting solutions will produce as good solutions as good starting solutions.

(3) Selecting the appropriate perturbation function appears to be very important.
(4) The choice of T_0 and β (cf. simulated annealing) are important when computational resources are limited and less crucial when this is not the case. The choice of β and L_c are important for the sequence method.

(5) In our tests, the sequence method performed marginally better than did simulated annealing. This adds support to our view that the observed performance of simulated annealing on combinatorial problems is due largely to its acceptance of bad perturbations in order to escape from local minima rather than to some mystical connection between combinatorial problems and the annealing of metals.

Experiments were also performed using the Traveling Salesman problem. Results may be found in [NAHA85a].

5. REFERENCES

