Motivation: Quality of Service

- Advantages of Packet-Based Transport (as opposed to circuit switched)
 - Flexibility
 - Optimal Use of Link Capacities, Multiplex-Gain for bursty traffic
- Drawbacks
 - Buffering/Queueing at routers can be necessary
 - Delay / Jitter / Packet Loss can occur
 - Overhead from Headers (20 Byte IPv4, 20 Byte TCP)

→ Protocol Improvements for Real-Time Applications necessary
 - Packet Prioritization (DiffServ, TypeOfService field in IPv4)
 - Resource Reservation (IntServ)
 - Traffic Engineering (QoS Routing, static/dynamic MPLS paths)
 - Connection Admission / Traffic Policing / Shaping
 - Header Compression
Real-time requirements: Parameters

- **User Plane QoS/Network Performance**
 - End-2-End Packet Delay (in particular interactive applications)
 - Delay Jitter
 - Packet Loss
 - Throughput/Goodput

- **Application Level QoS**
 - e.g. Video/Voice Quality (depending on codecs)

- **Signalling Plane**
 - Call Setup Delays
 - Fraction of blocked Calls

- **Reliability Aspects**
 - Failure probabilities of entities
 - Downtime distribution

- **Behavior at Handover**
 - Dropped Calls
 - Delayed / Lost packets

Focus here

See other lectures (Wireless Networks II and III)
Extended layered communication model

- Ultimate goal of RT service provisioning: user satisfaction
- Focus here: network aspects, i.e. L2-4

Relevant functionalities:
- PHY Layer
 - Bit/Symbol transmission → Throughput
 - Symbol error probabilities (channel conditions, interference)
 - Propagation delays

 L3: Network Layer: IP
 L2: MAC/LLC
 L4: Transport: TCP, UDP, RTP/UDP
 Application (L5)
 Session Control, e.g. SIP
 Middleware
 User Interface

 L1: PHYS

 Network QoS
 Application QoS
 User perceived QoS

Relevant Functionalities (cntd.)

- Link Layer (L2)
 - Medium Access Delays
 - Collisions/unsuccesful transmissions
 - Fragmentation
 - Forward error correction (FEC) and error detection (CRC)
 - Link-layer Retransmission Mechanisms (ARQ)
 - L2 scheduling, switching, buffering

- Network Layer (L3)
 - Path selection (routing)
 - Processing delays (e.g. for routing table lookup)
 - L3 buffering, scheduling, buffer management (RED)
 - [L3 fragmentation]
Relevant Functionalities (cntd.)

- Transport Layer (L4)
 - Multiplexing/de-multiplexing (UDP/TCP)
 - Error detection/checksums
 - In-order delivery, sequence numbers (TCP)
 - Acknowledgements and Retransmissions (TCP)
 - Flow/Congestion Control (TCP)

- Application Layer/Codecs
 - FEC/CRC
 - Application Layer Retransmissions
 - Application Layer sequence numbers

All Layers
- Increased volume due to headers

Internet Protocol (IP)

Internet Protocol IP, IPv4:
- Layer 3 Protocol (Network Layer): implemented in hosts and routers
- Packet (IP datagram) transmission between two hosts
 (variable packet size up to 65535 bytes, often restricted by Layer 2 protocols)
- Routing using 32 bit addresses (v4)
 - Normally based on destination address only!

- Real-time affecting properties
 - Packet duplications
 - Packet reordering
 - Packet loss
 - Fragmentation

- Real-time relevant functionalities
 - Scheduling in routers
 - Buffer management
 - Route selection

![IP datagram](image)
Example: Gaming Application

Types of Games
- Real Time Strategy
- Massively Multiplayer Online Role Playing Game
- First Person Shooter (FPS)
 - Considered here: Counter-Strike

Counter-Strike: QoS Requirements

- High requirements on
 - Delay (RTT<60ms)
 - Jitter
- Medium Requirements on
 - Packet Loss (<3%)
 - Bandwidth consumption rather low (22 players<1Mb/s)
Content

1. Motivation & Background
 • Real-Time applications
 • Parameters

2. Layering Models Revisited
 • Layers and their real-time relevant functionalities
 • Application Layer: Example Gaming

3. Real-Time Transport Protocol (RTP)
 • RTP Header, RTP Functionality
 • Control Protocol: RTCP

4. QoS Provisioning on the IP Layer
 • Overprovisioning
 • Differentiated Services
 • Integrated Services, RSVP
 • QoS Routing

5. Summary and Outlook

TCP and real-time applications

Discussion: TCP properties
• Reliable transmissions may cause additional delays (time-out + additional retransmission)
 – packet losses often less harmful for RT applications than retransmission delays
• Congestion control mechanisms control sending rate
 – not acceptable for RT applications
• No support of multi-casting

Problems of TCP over wireless
• Large RTTs cause long connection set-up times and slow transmission rates in slow-start
• Packet losses due to wireless link properties trigger TCP congestion control mechanisms
• RTT variations (e.g. Due to Layer 2 retransmissions) could cause TCP time-outs
User Datagram Protocol UDP

- User Datagram Protocol UDP (RFC 768)
 - Connectionless
 - Unreliable
 - No flow/congestion control
- Functionalities
 - (De-)Multiplexing: Port Numbers
 - Simple additive checksum → error detection
 - Length field

Real-Time Transport Protocol, RTP (RFC3550)

- Supports multi-party multimedia conferences
- Uses UDP and multicasting capabilities of IP
- Provides Time-stamps, sequence numbers
- Supports:
 - Codec description (in separate profile description, e.g. RFC3551)
 - Synchronization
 - Mixing & codec translation of multimedia streams
- Header

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Ver P X CC M PTYPE Sequence Number
| Timestamp | Synchronization Source Identifier | Contributing Source ID | ...
```
RTP details: Header Fields 1

- Version (2 bits)
 - currently 2
- P bit (1 bit)
 - 1 if zero padding follows the payload
- X bit (1 bit)
 - 1 if optional header extension is present
 - depends on application type
- CC: source count (4 bits)
 - maximum of 15 contributing sources is supported
- M: Marker bit (1 bit)
 - application dependent
 - mark events in data stream
 - e.g. frame start in video streams
- PTYPE: Payload Type (7 bits)
 - determines detailed interpretation of header and contents

RTP details: Header Fields 2

- Sequence Number (16 bits)
 - identifies RTP packets
 - initial sequence number chosen randomly for each session
- Timestamp (32 bits)
 - time at which the first octet of digitized data was sampled (relative)
 - random choice of initial time stamp
 - continuously incremented
 - clock granularity depends on application
- Synchronization Source Identifier (32 bits)
 - identifies the source of a stream
 - real source, mixer or translator
 - identification collisions resolved by protocol
- Contributing Source ID (variable size, CC x 32 bits)
 - list of source identifiers that contributed the samples mixed together by a mixer
RTP: Functional Entities

- **Mixer**
 - receives one or more RTP streams (contributing sources)
 - possibly changes data format (transcoding)
 - combines packets and forwards
 - Timing adjustments \(\rightarrow \) mixer is new synchronizing source
- **Translator**
 - Forward RTP packets without changing synchronization
 - E.g. Encoding converters (without mixing), replicators from multicast to unicast
- **Monitor**
 - Receives RTCP packets, in particular receiver reports
 - Estimates QoS, fault-diagnosis, long-term statistics
 - Integrated in applications in session or separate application (3rd party monitor)

RTP: Timestamps

- **Wallclock time**
 - Absolute date and time
 - Using Network Time Protocol (NTP) format
 - 64 bit unsigned fixed-point number (32 bit integer part)
 - Representing seconds since 0h, Jan. 1, 1900
 - RTP uses only timestamp differences (no ambiguity as long as within 68 years)
- **RTP timestamps**
 - Measured in clock-ticks of certain resolution
 - Clock frequency depends on payload format (e.g. defined by sampling period)
 - Initial value should be random
- Linking of RTP timestamps to reference (wallclock) time in RTCP Sender Reports
- Synchronisation of sources (e.g. using NTP) recommended but not mandatory
Real-time transmission control protocol: RTCP

- Control Protocol for RTP flows
- Functionalities
 - Monitor QoS
 - Convey participant information
 - Rate adaptation for Receiver Reports (scalability, very few up to thousands of participants)
- Message Types
 - 200 Sender Report
 - 201 Receiver Report
 - 202 Source Description (including canonical name, CNAME)
 - 203 BYE
 - 204 Application specific

RTCP Sender Report, see Sect. 6.4-6.7 of RFC 3550 for other packet types

Content

1. Motivation & Background
 - Real-Time applications
 - Parameters
2. Layering Models Revisited
 - Layers and their real-time relevant functionalities
 - Application Layer: Example Gaming
3. Real-Time Transport Protocol (RTP)
 - RTP Header, RTP Functionality
 - Control Protocol: RTCP
4. QoS Provisioning on the IP Layer
 - Overprovisioning
 - Differentiated Services
 - Integrated Services, RSVP
 - QoS Routing
5. Summary and Outlook
Over-Provisioning

- Design network to be able to deal with worst-case traffic scenario
- **Advantage:**
 - no impact on architecture, protocols and user equipment
 - simplicity
- **Problems:**
 - Traffic depends on number of active users, user mobility, type of application, daily utilization profile → difficult forecasting
 - Data traffic tends to be very bursty (even ‘self-similar’) → waste of resources if planned for worst-case scenario → can be very expensive
 - Unforeseeable events can occur (new applications; changes in user behavior, e.g. always-on)

Differentiated Services (DiffServ)

- Basic Idea: reduce queueing delay/loss for critical traffic by preferential treatment at routers (multiple queues)
 → improve per-hop transmission behavior
- Packets marked by DiffServ Code Points (DSCPs, 6bit)
- Various scheduling disciplines at routers possible (e.g. static priority, weighted fair queueing)
- **Advantage:** Simple and scalable
- **Problem:** No performance guarantees unless used in conjunction with connection admission and traffic shaping/policing at ingress routers
DiffServ Code Points (DSCP)

<table>
<thead>
<tr>
<th>Differentiated Services (DS) Byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per Hop Behaviour</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Version</th>
<th>IHL</th>
<th>TOS</th>
<th>Total Length</th>
<th>Identification</th>
<th>Flags</th>
<th>Fragment Offset</th>
<th>Source Address</th>
<th>Destination Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Version</th>
<th>Traffic Class</th>
<th>Flow Label</th>
<th>Payload Length</th>
<th>Next Header</th>
<th>Hop Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Source Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Destination Address</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPv4

IPv6

DiffServ: Influencing QoS

- **At Border Routers**
 - Traffic classification and Marking \rightarrow DiffServ Class (e.g. EF, AF, BE)
 - Traffic Policing/Shaping/Conditioning, e.g.
 - (Token) Leaky Bucket
 - Time-sliding window 3 color marker
 - Two thresholds: Committed Information Rate, Peak Information Rate
 - Time-sliding window for measurement of average rate
 $$ \Lambda_T = \Lambda_{T-1} + \Delta \sigma + \Delta t_i$$

- **At Interior DiffServ Router**
 - Scheduling: Strict Priority, Weighted Fair Queueing, etc.
 - Buffer Management, e.g. Random Early Drop RED, RIO
 - Possibly different drop precedence
Integrated Services (IntServ) / RSVP

- **Fundamental Idea:** Reserve necessary resources for each traffic flow along its transmission path, which requires:
 - Connection Admission Control (CAC): traffic specification + info about available resources at router → admission decision (if no, then re-routing)
 - Packet Classification: which flow does it belong to?
 - Packet Scheduling: make sure, flow obtains resources as specified

IntServ: functionalities

- **Connection/Call Admission Control (CAC)**
 - Easy for constant bit rate (CBR) flows
 - Difficult tasks for bursty traffic
 - Alternatives:
 - Peak-Rate Allocation → no multiplex gain
 - Mean-rate allocation → large delays and losses possible
 - Intermediate solution: effective bandwidths
 - Frequently based on limit theorems
 - Large deviations theory
 - High multiplex degrees
 - Packet Classifier
 - Flow specifications by so-called ‘filters’
 - Specifies ranges of value for L3/L4 header fields
 - Packet Scheduler
 - Multiple queues
 - Scheduling principles: WFQ, strict priority, EDF, ...
 - In addition: buffer management, e.g. RED (see later)
IntServ: Signalling, RSVP

- Signalling by Resource Reservation Protocol (RSVP)
 - Path Message: sender initiated, description of traffic parameters (Tspec) and path
 - Resv Message: receiver initiated, causes connection admission/reservation along path; specifies QoS parameters (Rspec)
 - Other messages for reservation teardown and error treatment
- Principles
 - In-path signalling
 - Multi-cast support
 - Soft-State concept: periodic refresh of reservation required
- **Advantages:**
 - Fine Granularity: per flow treatment, flexible set of QoS parameters
 - Able to provide QoS guarantees (if admission, classification, scheduling is performed correctly)
- **Disadvantages**
 - Scalability problem: management of state for each single flow
 - Complexity (already connection admission can be complex, e.g. effective bandwidths, etc.)

IntServ: RSVP Messages I

- **Path Message**
 - Tspec: Traffic specification
 - Token Bucket Rate
 - Token Bucket Size
 - Peak Data Rate
 - Minimum Policed Unit
 - Packet Size
 - Adspec: Network Resources on Path
 - Non QoS Hop-count
 - Available Path Bandwidth
 - Minimum Path Latency
 - Path MTU
 - Sender Template: Filter Specification
 - IP source address, protocol type, port number, etc.
 - Previous router on path
IntServ: RSVP Messages II

- **Resv Message**
 - Next hop in path (receiver → sender)
 - Flow-spec
 - Tspec
 - Rspec
 - List of Filter Specs (description of sender for which the reservation is intended)
 - Reservation style
 - Wildcard filter: shared, one reservation for all senders
 - Fixed filter: distinct, one per sender
 - Shared explicit: one reservation for specified list of senders

RSVP Messages: FlowSpec (Controlled Load)

<table>
<thead>
<tr>
<th>31</th>
<th>24 23</th>
<th>16 15</th>
<th>8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 (a)</td>
<td>reserved</td>
<td>7 (b)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5 (c)</td>
<td>0</td>
<td>reserved</td>
<td>6 (d)</td>
</tr>
<tr>
<td>3</td>
<td>127 (e)</td>
<td>0 (f)</td>
<td>5 (g)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Token Bucket Rate [r] (32-bit IEEE floating point number)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Token Bucket Size [b] (32-bit IEEE floating point number)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Peak Data Rate [p] (32-bit IEEE floating point number)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Minimum Policed Unit [m] (32-bit integer)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Maximum Packet Size [M] (32-bit integer)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Reservation Types:**
 - Guaranteed Service: Bandwidth and Delay Guarantees, No Loss
 - Controlled Load: Only Bandwidth Guarantee

(a) - Message format version number (0)
(b) - Overall length (7 words not including header)
(c) - Service header, service number 5 (Controlled-Load)
(d) - Length of controlled-load data, 6 words not including per-service header
(e) - Parameter 127, parameter 127 (Token Bucket TSpec)
(f) - Parameter 127 flags (set)
(g) - Parameter 127 length, 5 words not including per-service header
Additional Issues in QoS signalling

- Inter-domain signaling
- Off-path signaling
- Arbitrary placement of initiator and receiver
- Bi-directional signaling/ sender-initiated signaling
- Mobility support
- Implementation size & complexity (own transport protocol on top of IP, multicast support, etc.)
- How to secure RSVP in a real-world environment

QoS signalling scenarios

IN-Path

- State kept at more than two entities.
- Protocol requires interaction with other protocols (routing, security, AAA, mobility, etc.)
Traffic Engineering (TE)

- TE = distribute traffic over network links in order to avoid congestion
- IP routing (OSPF, IS-IS, RIP, etc.)
 - Based on destination IP address
 - No possibility for distinguishing traffic classes
 - Link costs normally statically assigned (sometimes even hop-count used)
 - Modification of link costs possible, but implications on link utilizations not straightforward
- Alternatives
 - QoS Routing: Use QoS parameters for path selection
 - Establishment of explicit paths
 - Automatically
 - Via network management
 - Approaches:
 - Tunneling: e.g. L2TP, PPP
 - Multi-Protocol Label Switching (MPLS)

Traffic Engineering: Time-scales

- In traditional use: traffic engineering and configuration of link costs for routing done via network management → time-scales of minutes to hours (in best case)
- Shorter time-scales (flow-level, even packet level) via extensions, e.g. QoS routing
QoS routing: Steps

- Add QoS relevant information to link state advertisements (in addition to static link costs and connectivity relation)

- Two approaches
 - Source Routing: Compute full routes
 - Distributed Routing: determine next hop

- Modify path metrics using QoS parameters
- Constraint-based routing: eliminate certain paths not meeting constraints (e.g. Minimal bandwidth req.)

BUT: increased complexity, path selection in some cases np-complete!

QoS routing: example

- OSPF-TE: LSAs advertise
 - Cost
 - Residual bandwidth
 - Delay of links
- Widest-shortest path algorithm:
 - Among all paths with sufficient bandwidth
 - choose among those with the lowest hop count
 - If there are several feasible paths with identical hop count, choose the one with the highest residual bandwidth.
- Computation of routing tables at each node using a modified Bellman-Ford algorithm
Summary

1. Motivation & Background
 • Real-Time applications
 • Parameters
2. Layering Models Revisited
 • Layers and their real-time relevant functionalities
 • Application Layer: Example Gaming
3. Real-Time Transport Protocol (RTP)
 • RTP Header, RTP Functionality
 • Control Protocol: RTCP
4. QoS Provisioning on the IP Layer
 • Overprovisioning
 • Differentiated Services
 • Integrated Services, RSVP
 • QoS Routing
5. Summary and Outlook

Topics not treated here

• QoS aware link-layer protocols (802.1q, etc.)
• Traffic Classes (ATM, UMTS, etc.)
• Details of scheduling methods (WFQ, etc.)
• Details of buffer management (RED, etc.)
• (Token) Leaky Buckets
• Multi-Protocol Label Switching, MPLS (and signalling protocols, e.g. CR-LDP)
• QoS in wireless technologies
• End-to-end QoS signalling in UMTS (SIP/IMS)
• Coupling of Mobility support and QoS
• Service Level Agreements (SLAs)
• Performance Models

[and many more…]
Acknowledgements/References

- Student work
 - Raimund Brandt (TU Munich, Seminar)
- Presentations of H. Schulzrinne (Columbia University) and H. Tschofenig (Siemens Corporate Technologies)
- InfotechLecture notes: IP Based Networks and Applications, Chapter 3 (J. Charzinski), www.jcho.de/jc/IPNA
- Tutorial: IP Technology in 3rd Generation mobile networks, Siemens AG (J. Kross, L. Smith, H. Schwefel)