Wireless Communication Protocols and Technologies
by Tatiana Madsen & Hans Peter Schwefel

- Mm1 Introduction into security aspects (hps)
- Mm2 ad-hoc networks I (TKM)
- Mm3 ad-hoc networks II (TKM)
- Mm4 Advanced Mobility Topics (HPS)
- Mm5 Simulation Techniques and Measurements (HPS)

www.kom.auc.dk/~tatiana/ www.kom.auc.dk/~hps/

Content

1. Motivation & Background
 • Performance Analysis in Wireless Settings
 • Review of Basic Concepts: Random Variables, Exponential Distributions, Stochastic Processes

2. Simulation Models
 • Basics: Discrete Event Simulation
 • Random Number Generation
 • Output Analysis

3. Summary
Intro: Packet-Based Transport

- Advantages of Packet-Based Transport (as opposed to circuit switched)
 - Flexibility
 - Optimal Use of Link Capacities, Multiplex-Gain for bursty traffic
- Drawbacks
 - Buffering/Queueing at routers can be necessary
 - Delay / Jitter / Packet Loss can occur
 - Overhead from Headers (20 Byte IPv4, 20 Byte TCP)

... and it makes performance modeling harder!!

Main motivation for Performance Modeling:
- Network Planning
- Evaluation/optimization of protocols/architectures/etc.

Challenges in Packet Switched Setting

Challenges in IP networks:
- Multiplexing of packets at nodes (L3)
- Burstiness of IP traffic (L3-7)
- Impact of Dynamic Routing (L3)
- Performance impact of transport layer, in particular TCP (L4)
- Wide range of applications → different traffic & QoS requirements (L5-7)
- Feedback: performance → traffic model, e.g. for TCP traffic, adaptive applications

Challenges in Wireless Networks:
- Wireless link models (channel models)
- MAC & LLC modeling
- RRM procedures
- Mobility models
- Cross layer optimization
 → Analysis frequently with ‘stochastic’ models
Basic concepts

• Probabilities
 – ‘Random experiment’ with set of possible results Ω
 – Axiomatic definition on event set $V(\Omega)$
 • $0 \leq \Pr(A) \leq 1$; $\Pr(\emptyset) = 0$; $\Pr(A \cup B) = \Pr(A) + \Pr(B)$ if $A \cap B = \emptyset$ $[A, B \in \mathcal{P}(\Omega)]$
 – Conditional probabilities: $\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$

• Random Variables (RV)
 – Definition: $X: \Omega \rightarrow \mathbb{E}$; $\Pr(X=x) = \Pr(X^{-1}(x))$
 – Probability density function $f(x)$, cumulative distribution function $F(x) = \Pr(X \leq x)$,
 reliability function (complementary distr. Function) $R(x) = 1 - F(x) = \Pr(X > x)$
 – Expected value, moments: $E(X^n) = \int x^n f(x) \, dx$
 – Relevant Examples, e.g.:
 • number of packets that arrive at the access router in the next hour (discrete)
 • Buffer occupancy (#packets) in switch x at time y (discrete)
 • Number of downloads (‘mouse clicks’) in the next web session (discrete)
 • Time until arrival of the next IP packet at a base station (continuous)

Basic concepts: Exponential Distributions

Important Case: Exponentially distributed RV

• Single parameter: rate λ
• Density function $f(x) = \lambda \exp(-\lambda x)$, $x > 0$
• Cdf: $F(x) = 1 - \exp(-\lambda x)$, Reliability function: $R(x) = \exp(-\lambda x)$
• Moments: $E[X] = 1/\lambda$; $\text{Var}[X] = 1/\lambda^2$, $C^2 = \text{Var}[X] / [E[X]]^2 = 1$

Important properties:

• Memory-less: $\Pr(X>x+y \mid X>x) = \exp(-\lambda y)$
• Properties of two independent exponential RV: X with rate λ, Y with rate μ
 – Distribution of $\min(X,Y)$: exponential with rate $(\lambda+\mu)$
 – $\Pr(X<Y) = \frac{\lambda}{\lambda+\mu}$
Basic concepts III: Stochastic Processes

- Definition of process \((X_i)\) (discrete) or \((N_t)\) (continuous)
 - Simplest type: \(X_i\) independent and identically distributed (iid)
- Relevant Examples:
 - Inter-arrival time process: \(X_i\)
 - Counting Process:
 \[N(t) = \max \{ n \mid \sum_{i=1}^{n} X_i \leq t \} \]
 alternatively \(N_i(\Delta) = N(i\Delta) - N((i-1)\Delta) \)

Important Example: Poisson Process
- Assume i.i.d. exponential packet inter-arrival times (rate \(\lambda\)): \(X_i := T_i - T_{i-1}\)
- Counting Process: Number of packets \(N_t\) until time \(t\)
 - \(\Pr(N_t = n) = (\lambda t)^n \exp(-\lambda t) / n! \)
- Properties:
 - Merging: arrivals from two independent Poisson processes with rate \(\lambda_1\) and \(\lambda_2\) \(\Rightarrow\) Poisson process with rate \((\lambda_1 + \lambda_2)\)
 - Thinning: arrivals from a Poisson process of rate \(\lambda\) are discarded independently with probability \(p\) \(\Rightarrow\) Poisson process with rate \((1-p)\lambda\)
 - Central Limit Theorem: superposition of \(n\) independent processes results in the limit \(n \to \infty\) in a Poisson process (under some conditions on the processes)

Content

1. Motivation & Background
 - Performance Analysis in Wireless Settings
 - Review of Basic Concepts: Random Variables, Exponential Distributions, Stochastic Processes

2. Simulation Models
 - Basics: Discrete Event Simulation
 - Random Number Generation
 - Output Analysis

3. Summary
Simulation Models (I)

- Basic principles of discrete event simulation
 - Virtual simulation time t
 - System state $S(t)$
 - Events occur at certain times t_i
 - Instantaneous changes of system state $S(t_{i-1}) \rightarrow S(t_i)$
 - Possibly scheduling of follow-up events
 - Events stored in ordered event list
 - System description:
 - Entities, attributes, and activities
 - Frequently object oriented implementation

- Important aspects
 - Initial state $S(0)$
 - Termination Criterion
 - Fixed simulation time T
 - Fixed number of packets/connections
 - Occurrence of certain events (e.g. Loss of connectivity)

Simulation Models (II)

- Application to wireless networks: Main components
 - Topology definition: nodes and connectivity
 - Link properties: e.g., Propagation models
 - Node functionalities: e.g., schedulers, buffer management, L2/L3 protocol implementation
 - Traffic models (and transport protocol implementation)
 - Mobility Models

- probabilistic elements in several of these components \Rightarrow stochastic simulation
 - 'alternative': trace-driven simulations

- Output parameters, statistics collection, e.g.
 - Packet based
 - End-to-end packet delay
 - Packet loss rate
 - Energy per packet
 - Connection based
 - File Transfer times
 - Fraction of blocked calls
 - Throughput
 - Node/Link Properties
 - Buffer occupancy
 - Link utilizations
 - Throughput
Types and Examples of Simulation Tools

• ‘Libraries’ and programming languages with basic functionalities and data types:
 – Simula [e.g. R. Pooley: An Introduction to Programming in SIMULA, 1987]

• General Purpose Simulation Environments, e.g.
 – DEMOS/MAOS [Birtwistle, A system for discrete event modelling on SIMULA (DEMOS), 1979]
 – GPSS [http://www.minutemansoftware.com]

• Network Simulation Tools, e.g.
 – NS2 [http://www.isi.edu/nsnam/ns/]
 – OPNET
 – WIPSIM [http://www.wipsim.net/]
 – Glomosim [http://pcl.cs.ucla.edu/projects/glomosim]

Random Number Generation

• Uniform Random Number Generator (RNG)
 – Sequence U_1, U_2, \ldots of i.i.d. ‘random’ numbers, uniformly distributed in $[0,1[$
 – Pseudo-random: same seed $X_0 \rightarrow$ same sequence
 – example: linear congruential generator
 • $X_{i+1}=(a X_i + b) \mod c$, $U_{i+1}=X_{i+1}/c$
 • E.g. $a=7^5=16807$, $b=0$, $c=2^{31}-1$ (prime)

• Random Variables from general distributions
 – Y_1, Y_2, \ldots with cumulative distribution function $F(x)$
 derived from uniform stream U_1, U_2, \ldots by
 • Inversion: $Y_i=F^{-1}(U_i)$
 • Other Techniques: Rejection, Convolution/Composition, etc.
Exercises I:

1. Random Number Generation: Write a MATLAB function to generate exponentially distributed random numbers based on the uniform RNG rand() from MATLAB.
 a. Check mean and coefficient of variation of the created number stream.
 b. Plot a histogram and compare with the exponential density function.
 c. Write a program to compute the empiric cumulative distribution function and compare with the exponential distribution.
 d. Check independence properties.

2. Write a simulation program for an M/M/1 queueing model.
 a. Plot the queue-length process for different simulation runs with lambda=0.5 and mu=1.
 b. Plot the average queue length over time t.
 c. Investigate the time to reach queue length B=5.
 d. Investigate correlation properties of the busy period duration.

Output Analysis (I): General

• Goal: Obtain Estimator Ž of desired performance parameter μ
 – Note: Ž often multi-dimensional
 – Ž is a random variable with some distribution fŽ(x)
 – Considered case here: Ž is estimator of μ=E(Z)

• Properties of estimator: Žt is called
 • Unbiased when E(Žt)=μ
 • Consistent when lim Žt=μ for t→∞ (stochastic convergence)

• Types of Simulations
 – Terminating simulations ~ ‘transient parameters’
 – Non-terminating simulations ~ Steady-state parameters
Output Analysis II: Terminating Simulations

- Terminating Simulations
 - Explicite stopping criterion, e.g.
 - Fixed simulation time
 - Fixed number of arrivals/connections
 - Specific event (e.g., buffer overflow, component failure)
 - Approach: Independent Replications
 - Repeat Experiment R times, each time with different seeds
 - independent outcomes \(Z_1, Z_2, \ldots, Z_R \)
 - Estimator \(\hat{Z} = 1/R \sum Z_i \)
 - Unbiased
 - Asymptotically normal distributed

- Relevant examples:
 - Determine average buffer-occupancy during busy hours 9-17hrs (starting empty at 9hrs)
 - Determine probability that call will be dropped before its desired end (given initial conditions)
 - Determine probability of buffer-overflow within \(n \) packet arrivals (given empty buffer in beginning)

Output Analysis III: Confidence Intervals

- Example: Estimate Probability \(\gamma = \Pr(\text{Overflow before simulation time } t) \)
 - \(R \) replications with indep. outcomes \(Z_i \)
 - Estimator \(\hat{Z} = 1/R \sum Z_i \)
 - \(E(\hat{Z}) = \gamma \) (unbiased!),
 - Estimates \(\hat{S}^2 \) of \(\text{Var}(Z_i) \)
 - \(\hat{S}^2 = 1/(R-1) \sum (Z_i - \hat{Z})^2 \)
 - \(\hat{S}^2 / R \) is estimate of \(\sigma^2 = \text{Var}(\hat{Z}) \)

Approaches for Confidence Intervals, confidence level \(1-\alpha \) (often \(1-\alpha = 95\% \)):

- Convergence to normal distribution
 - \((\hat{Z} - \gamma) / \sigma \) in the limit standard normal distributed
 - Hence for \(n_{\text{conv}} \), quantile of normal distribution at level \((1-\alpha)/2 \)
 - \(\Pr(\hat{Z} - \sigma n_{\text{conv}} < \gamma < \hat{Z} + \sigma n_{\text{conv}}) = 1-\alpha \)
 - Using the variance estimate \(\hat{S}^2 / R \):
 - \(\Pr(\hat{Z} - \sqrt{\hat{S}^2} / \sqrt{R} n_{\text{conv}} < \gamma < \hat{Z} + \sqrt{\hat{S}^2} / \sqrt{R} n_{\text{conv}}) = 1-\alpha \)

- General variance estimate \(\sqrt{\hat{R}} (\hat{Z} - \gamma) \) approx. Student-t distributed with \((R-1) \) degrees of freedom
- Other approaches, e.g., variance stabilization for probability estimates [see Heyman/Sobel]
Special case: Binary Outcome

- Example: Estimate Probability $\gamma=\Pr(\text{Overflow before simulation time } t)$
 - R replications with indep. outcomes $Z_i=\{1 \text{ when overflow occurred}, \ 0 \text{ otherwise}\}$
 - Estimator $\hat{Z}=1/R \sum Z_i$
 - $R*\hat{Z}$ Binomially distributed: expected value γR, variance $R(1-\gamma)$
 - $E(\hat{Z})=\gamma$ (unbiased!), $Var(\hat{Z})=\gamma(1-\gamma)/R$
 - Estimates $\hat{\sigma}^2$ of $Var(Z)=\sigma^2$
 - $\hat{\sigma}^2 = \hat{Z}(1-\hat{Z})$ [for probabilities]

Output Analysis IV: non-terminating case

- Steady state parameters \implies in theory infinite simulation needed
- Finite simulation length causes biased estimator
- Approaches:
 - Independent replications, impact of transient phase
 \implies 'avoid' transient phase
 - Single, long simulation run
 - Problem: correlated samples require adjustment of variance estimate
 - Alternatives
 - Batching
 - Regenerative Simulation
Summary

1. Motivation & Background
 • Performance Analysis in Wireless Settings
 • Review of Basic Concepts: Random Variables, Exponential Distributions, Stochastic Processes

2. Simulation Models
 • Basics: Discrete Event Simulation
 • Random Number Generation
 • Output Analysis

3. Summary

Exercises II:

3. Simulations: Use your M/M/1 simulation program from MM1 to obtain the probability that the queue reaches length 10 within simulation time t=100.
 a) Use independent replications and plot the distribution of the MEAN ESTIMATOR for N=10, N=20, N=50, N=100 replications. Compare with a normal distribution.
 b) Plot the behavior of the transient overflow probability for lambda in [0.05:0.05:0.5]. What happens with the confidence intervals for small lambda?
 c) Use the approach of batch means to develop an estimate (and 95% confidence intervals) of the average queue-length. Compare with independent replications.
 d) Transient phase: Use a queue with lambda=0.95 and mu=1. Check how the estimate for average queue-length (using independent replications) is influenced by dropping the first K samples out of N samples in the individual simulation run.
 i. K=0, N=100
 ii. K=50, N=100
 iii. K=0 N=1000
 iv. K=50 N=1000
 v. K=500 N=1000
 vi. K=1000, N=5000
References

Simulation models

* more details in lecture 'Discrete Event simulation' (9th Sem DIRS/NPM)