Audio-Visual Speech Recognition

Readings in Advanced Intellimedia (MM2)

About the papers

- “Audio-Visual Speech Recognition” workshop in 2000
Summary

- Automatic Speech Recognition
- Audio-Visual Speech Recognition
 - Basis
 - Different methods
- Existing Databases & Software
 - OpenCV & AVCSR
- Applications
 - Home care workers’ project

Automatic Speech Recognition

- ASR has been an active research for several decades
- What is the task?
 - Getting a computer to understand spoken language
 - By “understand” we might mean
 - React appropriately
 - Convert the input speech into another medium, e.g. text
ASR: How do humans do it?

Articulation produces sound waves which the ear conveys to the brain for processing.

ASR: How might computers do it?

- Digitization
- Acoustic analysis of the speech signal
- Linguistic interpretation

Speech recognition
ASR: limitations

- Performance is far from the one achieved by a human
- Limitations:
 - Ignore visual speech cues
 - Susceptible to acoustic noise
 - Examples: /m/ against /n/ and /b/ against /p/ …
- Research effort in ASR for noisy environments

AV Speech Recognition

- Human speech perception is bimodal
AV Speech Recognition

- Robust face detection
- Location estimation and tracking of the speaker’s mouth or lips
- Two streams of features, one for each modality
- Outperform audio-only ASR

Audio-Visual SR: detection

- Face detection & Lip tracking
 - Determine a ROI (region-of-interest)
 - Techniques to locate ROIs
- Facial feature detectors are used
Visual features

- Appearance Based features
 - Principal components analysis
 - Discrete cosine, wavelet, and other image transforms
 - Linear discriminant analysis
- Shape Based features
 - Lip geometric features
 - Lip model features
- Appearance & Shape features

Audio-visual integration

- Grouped into 2 methods:
 - Feature fusion
 - Decision fusion
- The sequence of features can be modeled by a Hidden Markov Model (HMM): most widely used classifier
 - Markov chain – a feature is generated based on its current state, at each time step. The system transitions from one state to another.
 - We see feature, not states
 - The features corresponding to a particular state are similar. The model specifies the feature probability matrix.
Noise reduction

- Speech recognition in controlled situations has reached very high levels of performance

- Performance degrades in noisy situations
 - 100% to 30% accuracy in a car (90km/h)
 - 99% to 50% in a cafeteria

- A system trained with a given SNR performs worse in other SNR environments.

1. Noise Resistance

- Search for noise resistant features and robust distance measures
Noise reduction

2. Speech Enhancement

- Remove noise from the signal

3. Model Compensation For Noise

- Transform speech model to accommodate noise
Softwares

- RoboRealm
- CMVision
- Gwyddion
- API (JAI, MegaWave2..)
- CMU Sphinx
- Nuance
- OpenCV

OpenCV: presentation

- Computer vision library originally developed by Intel
- **Motivation:** Due to the poor performance of conventional speech recognition system in noisy environment, OpenCV libraries can combine both audio and video features to achieve better speech recognition accuracy
- **General ideas:**
 - Video feature extraction
 - Audio feature extraction
 - Using models such as:
 - Hidden Markov Models (HMMs): Audio HMMs, Visual HMMS, Coupled HMMs
- **Software:** Visual C++, OpenCV image processing library, Intel AVCSR library…
- **Hardware:** Computer, Webcam, Microphone
Examples on OpenCV

- Hough Lines
- Contours
- Squares
- Histograms
- Fit Ellipse
- Distance Transform
- Delaunay

OpenCV Results
OpenCV Results

<table>
<thead>
<tr>
<th>Sample Testing</th>
<th>SNR: 5dB</th>
<th>SNR: 30dB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASR</td>
<td>VSR</td>
</tr>
<tr>
<td>video01</td>
<td>50.00%</td>
<td>50.00%</td>
</tr>
<tr>
<td>video02</td>
<td>80.00%</td>
<td>20.00%</td>
</tr>
<tr>
<td>video03</td>
<td>75.00%</td>
<td>25.00%</td>
</tr>
</tbody>
</table>

Applications
Home care workers’ project

- Use a PDA to allow ASR
- Working with Distributed Speech Recognition (DSR)

Main problem:
- Workers would use the system in noisy environments such as cars...
- Performance degrades in noisy situations:
 - 100% to 30% in a car (90km/h)
 - 99% to 50% in a cafeteria
- Possible surveys & discussions:
 - Remove noise from the signal to allow SR
 - Develop a AVCSR system
Thank you!

Any questions?