TABLE OF CONTENTS

• Introduction
• Methods
 • Key-frame extraction
 • Automatic visual indexing
 • Shot boundary detection
 • Video OCR
• Index in motion
• Image processing algorithms
TABLE OF CONTENTS

• Types of knowledge
• Indexing tools
• Incremental galleries
• Video searching

INTRODUCTION

• Browsing, searching and manipulating video documents
 → Index describing the video content is required.

• Until now → Carried out by documentalists

• Manual indexing → Expensive and time consuming task.
INTRODUCTION

• Therefore, Automatic Classification of video contest is necessary →

 Video Index: “The process of automatically assigning content-based labels to video documents”

INTRODUCTION

• “Raw” video streams → Structured and indexed database-driven information entities

• Maximize effectiveness of Web Contents.

• One of the major applications being recently addressed in international market.
INTRODUCTION

• Video indexing is comparable to text indexing or bookmarking.

• However, implementation is very different and much more difficult than the query mechanism for a textual database.

INTRODUCTION

• In a video document, three information channels are considered:
 – Visual modality.
 – Auditory modality.
 – Textual modality.
INTRODUCTION

• Two main techniques of Video Indexing:
 – Scene change detection technique can be applied for:
 • Scene Browsing.
 • Automatic and intelligent video indexing of video sequences for video databases.
 – Content-based indexing mechanisms such as:
 • Object texture, shape, color, motion, etc.

INTRODUCTION

• Video usually contains an enormous amount of visual information → Very important indexing consideration.

• Only keep a representative image from a long scene → This process is called “Keyframe extraction”.
KEY-FRAME EXTRACTION

• Algorithm that provides summarization of a video by selecting a small number of frames, able to catch the visual and semantic properties of a video or video-shot.

• Problem:
 – Redundancy clutter → Most used systems today rely on the power of human observation to validate out coming data.

KEY-FRAME EXTRACTION

• In short:
 – An efficient and modular methodology for video indexing, presents a technological challenge.
AUTOMATIC VISUAL INDEXING

• QBIC (Query By Image Content)
 – Indexing method based on color, texture, shape etc.
 – Still images → Each video clip is segmented into small units (shots) then one or more keyframes in each unit are selected.
 – Each keyframe is automatically indexed using its visual characteristics.

AUTOMATIC VISUAL INDEXING

• Problems:
 – One clip usually contains more than one keyframe.
 – The number & density of keyframes in a clip can be problematic:
 • Long video.
 • Short clip.
Other supplementary methods for digital video libraries include:
- Shot Boundary Detection.
- Keyframe extraction.
- Speech recognition (Using Sphinx speech recogniser).
- Face detection.
- Video OCR
- Image search based on color histogram features.

Major techniques used for shot boundary detection:
- Pixel differences.
- Statistical differences.
- Edge differences.
SHOT BOUNDARY DETECTION

• Major techniques used for shot boundary detection:
 – Motion vectors.
 – Histogram comparisons.

VIDEO OCR

• OCR – Optical Character Recognition
 – Mechanical or electronic translation of scanned images.
 – Search engine.
 – Field of research in pattern recognition, artificial intelligence and computer vision.
• What kind of text occurrences should be considered?

Scene Text Overlay Text

• In what kind of media data?
 – Treating video as a set of independent images.
 – Same text line occurs in videos for some time → Multiple instances of the same text line → Better detection.

• Font Attributes
• Usages:
 – Video Indexing: Tolerates pixel errors in the localization and segmentation steps.
 – For object-based video encoding: Minimize the errors in pixel classification.
 – Visual removal of text from videos → Automatic translation into another language.

• Software: OpenCV
 – Library of programming functions for real time Computer Vision

• VIDEO OCR - DEMOS

 • http://www.youtube.com/watch?v=fn1ZJ0HeeOc&NR=1
 • http://www.youtube.com/watch?v=zkjBqea8RPM&NR=1
 • http://www.youtube.com/watch?v=BLG28-xNoMU&NR=1
INDEX IN MOTION

• The user can query by video clips’ moving characteristics.
• Techniques:
 – Feature extraction.
 – Object tracking across frames.
• Early stage: Small number of experimental systems.

IMAGE PROCESSING ALGORITHMS

• Camera Motion Estimation and Compensation:
 • Recover parametric estimates of the camera motion between consecutive frames in the video.
 • Parameters used:
 – to locate independently moving objects
 – to label the sequence in terms of camera motion operations.
IMAGE PROCESSING ALGORITHMS

• **Object Segmentation and Tracking Techniques:**
 – Objects of interest are segmented from the background based on color or motion attributes.
 – Tracked from across the different frames.

• **Line Detection:**
 – Used to detect structures of interest in the scene.
 – The algorithms incorporate operations like edge-detection, edge-linking and edge-thinning.
TYPES OF KNOWLEDGE

• Physical Knowledge:
 – Includes constraints derived from the physical environment.

• Cinematic Knowledge:
 – Includes the details on how the particular event is filmed and produced.

• Semantic Knowledge:
 – Includes the knowledge about the actual sport, the temporal structure of the game, the rules of the games and other high level information about the sport.
INDEXING TOOLS

• **Key-frame detection**

 – Is based on the similarity measures. A key-frame is a frame which contains the most information and is the most distinct from the other frames within a shot.

• **Key-frame detection**

 – Two functions are used:
 • the “utility function”: based on the entropy of the color distribution
 • the “frame distance function”: based on the Bhattacharyya distance.
INDEXING TOOLS

• **Motion characterization**
 – Motion characterization is based on which calculates the optic flow on automatically detected salient points.
 – Visual interface provides local information through intensity and direction motion maps.

• **Key-face detection**
 – Useful for automatic cast summarization and automatic extraction of face image training sets for face recognition.
INDEXING TOOLS

• Key-face detection

 Two main steps:

 • frontal face detection: detected on each frame with a cascade of boosted classifiers

 • face image dissimilarity assessment: checks if the currently processed frame contains a face image similar to the last detected image face.

Indexing Tools

• Face recognition

 – Face candidates are detected on each frame.

 – Spatial likelihood is assigned to each face candidates detected. The likelihood is used to increase face recognition performance in complex scenes.

 – Face recognition of a face candidate is done with an Hidden Markov Model encoding procedure.
• **Facial characterization**

 – Provides information regarding the facial expression of almost frontal faces.

 • Face feature detection

 • Face normalization: consists in using the position of features to scale and orient the face image according to a normalized pose.

• **Facial characterization**

 • Facial expression recognition: seven basic emotions (anger, disgust, fear, happiness, sadness, neutral and surprise)

 – Emotions are detected globally on a frame by frame basis
INDEXING TOOLS

• **Text spotting**
 – Scanning the frame with a variable-size window.
 – First stage: simple classifier that discards as many false alarms as possible.
 – Second stage: the output of the cascade is a decision map showing regions of interest that may contain text, and on which a commercial OCR will be applied.

INCREMENTAL GALLERIES

• **Personal gallery is adapted by**
 – updating an entry of the gallery with the input (known person case)
 – adding the input as a new entry of the gallery (unknown person case)
VIDEO SEARCHING

• Searching by person, event, topic, date…
• Inconvenients:
 – Very high cost of maintenance with big and dynamic databases.
 – Creation of a hierarchy of categories which makes easy localization of documents to a large number of users.

REFERENCES

• www.daedalus.gr/prdinfo1.html
• www.ieee.org/
• ieeexplore.ieee.org
• Una panorámica de las Telecomunicaciones (Anibal R. Figueiras)
REFERENCES

• Related Papers:
 • Application of Content-Based Video Indexing to Computer-Assisted Descriptive Video
 • Automatic Video Indexing with Incremental Gallery Creation
 • Semantic Video Indexing: Approach and Issues
 • A Web-Enabled Video Indexing System
 • Automatic Text Segmentation and Text Recognition for Video Indexing