Speech Communication, Spring 2006

Lecture 3: Speech Coding and Synthesis

Zheng-Hua Tan

Department of Communication Technology
Aalborg University, Denmark
zt@kom.aau.dk

Human speech communication process

(After Rabiner & Levinson, 1981)

Speech recognition

Speech understanding

Speech coding

Vocoder coding

Waveform coding

Speech synthesis

Lecture 1

Lecture 2
Part I: Speech coding

- Speech coding
 - Waveform coding
 - Parametric coding (vocoder)
 - Analysis-by-synthesis

- Speech synthesis
 - Articulatory synthesis
 - Formant synthesis
 - Concatenative synthesis

Speech coding

- Definition: analogue waveform → digital form
- Objectives: (for transmission and storage)
 - High compression - reduction in bit rate
 - Low distortion - high quality of reconstructed speech
 - But, the lower the bit rate, the lower the quality.

- Theoretical foundation
 - Redundancies in the speech signals
 - Properties of speech production and perception

- Applications
 - VoIP
 - Digital cellular telephony
 - Audio conferencing
 - Voice mail
Speech coders

- **Waveform coders**
 - Directly encode waveforms by exploiting the characteristics of speech signals, mostly (scalar coders) \textit{sample-by-sample}.
 - High bit rates and high quality
 - Examples: 64kb/s PCM (G.711), 32 kb/s ADPCM (G.726)

- **Parametric (voice coder i.e., vocoder) coders**
 - Represent speech signal by a set of parameters of models
 - Estimate and encode the parameters from frames of speech
 - Low bit rates, good quality
 - Examples: 2.4 kb/s LPC, 2.4 kb/s CELP

- **Analysis-by-synthesis coders**
 - Combination of waveform and parametric coders
 - Medium bit rates
 - Examples: 16 kb/s CELP (G.728), 8 kb/s CELP (G.729)

Time domain waveform coding

- **Waveform coders** directly encode waveforms by exploiting the temporal (\textit{time domain}) or spectral (\textit{frequency domain}) characteristics of speech signals.
 - Treats speech signals as normal signal waveforms.
 - It aims at obtain the most similar reconstructed (decoded) signal to the original one.
 - So \textit{SNR} is always a useful performance measure.

- In the time domain:
 - Pulse code modulation (PCM)
 - Linear PCM, µ-law PCM, A-law PCM
 - Adaptive PCM (APCM)
 - Differential PCM (DPCM)
 - Adaptive DPCM (ADPCM)
Linear PCM

- Analog-to-digital converters perform both sampling and quantization simultaneously.
- Here we analyse the effects of quantization: each sample → a fixed number of bits, B.
- Linear PCM
 - B bits represent 2^B separate quantization levels
 - Assumption: bounded input discrete signal
 $$|x[n]| \leq X_{\text{max}}$$
 - Uniform quantization: with a constant quantization step size Δ for all levels x_i
 $$x_i - x_{i-1} = \Delta$$

Linear PCM (cont’d)

- Two common uniform quantization characteristics:
 - mid-riser quantizer
 - mid-tread quantizer
- Two parameters for a uniform quantizer:
 - the number of levels $N = 2^B$
 - the step size Δ

$$2 \cdot X_{\text{max}} = \Delta \cdot 2^B$$

Three-bit (N=8) mid-riser quantizer
Quantization noise and SNR

- **Quantization noise:**
 \[e[n] = x[n] - \hat{x}[n] \]
 if \(2 \cdot X_{\text{max}} = \Delta \cdot 2^B\), \(-\frac{\Delta}{2} \leq e[n] \leq \frac{\Delta}{2}\)

- **Variance of** \(e[n]\) **which is uniformly distributed.**
 \[\sigma^2_e = \mathbb{E}[(e[n] - \mu)^2] = \mathbb{E}[e^2[n]] = \frac{\Delta}{2} \cdot \frac{e^2[n]}{\Delta} \cdot de[n] = \frac{\Delta^2}{12} = \frac{X_{\text{max}}^2}{3 \times 2^{2B}} \]

- **SNR of the quantization**
 \[
 \text{SNR}(dB) = 10 \log_{10} \left(\frac{\sigma^2_x}{\sigma^2_e} \right) = \left(20 \log_{10} \frac{20}{10}\right) - B + 10 \log_{10} 3 - 20 \log_{10} \left(\frac{X_{\text{max}}}{\sigma_x} \right)
 \]

indicating each bit contributes to 6 dB of SNR

11~12-bit PCM achieves 35 dB since signal energy can vary 40 dB

Applications of PCM

16-bit linear PCM

- Digital audio stored in computers: Windows WAV, Apple AIF, Sun AU

- Compact Disc – Digital Audio
 - A CD can store up to 74 minutes of music
 - Total amount of data = \(44,100 \text{ samples/(channel*second)} \times 2 \text{ bytes/sample} \times \)
 - 2 channels * 60 seconds/minute * 74 minutes
 = 783,216,000 bytes
µ-law and A-law PCM

Human perception is affected by SNR → constant SNR for all quantization levels → the step size being proportional to the signal value rather than being uniform → a logarithmic compander

\[y[n] = \ln |x[n]| \]

+ a uniform quantizer on \(y[n] \) so that

\[\hat{y}[n] = y[n] + \varepsilon[n] \]
\[\hat{x}[n] = x[n] \exp \{\varepsilon[n]\} \equiv x[n](1 + \varepsilon[n]) = x[n] + x[n]\varepsilon[n] \]

thus SNR is constant for all levels

\[\text{SNR} = \frac{1}{\sigma^2 x} \]

µ-law and A-law PCM (cont’d)

- µ-law approximation

\[y[n] = X_{\max} \frac{\log[1 + \mu \frac{|x[n]|}{X_{\max}}]}{\log[1 + \mu]} \text{sign}\{x[n]\} \]

- A-law approximation

- G.711 standardized telephone speech coding
 - 64 kbps = 8 kHz sampling rate * 8 bits per sample
 - Approximate 35 dB SNR \(\leftrightarrow \) 12 bits uniform quantizer
 - Whose quality is considered toll and an MOS of about 4.3, a widely used baseline.
Parametric coding (vocoder)

- Are based on the all-pole model of the vocal system
- Estimate the model parameters from frames of speech (speech analysis) and encode the parameters on a frame-by-frame basis
- Reconstruct the speech signal from the model (speech synthesis)

![Diagram of Parametric Coding (Vocoder)]

Parametric coding (vocoder) (cont’d)

- Does not require/guarantee similarity in the waveform
- Lower bit rate, but the quality of the synthesized speech is not as good both in clearness and naturalness
- Example – LPC vocoder
 - The source-filter model & LPC vocoder

```
Source  Filter     Output
       Vocal tract
```

linear predictive coding ➔ an LPC vocoder
Analysis-by-synthesis - CELP

- CELP (code excited linear prediction): a family of tech. that quantize the LPC residual using VQ, thus the term code excited, in addition to encoding the LPC parameters.

- CELP based standards

<table>
<thead>
<tr>
<th></th>
<th>kbps</th>
<th>MOS</th>
<th>Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.728</td>
<td>16</td>
<td>4.0</td>
<td>low</td>
</tr>
<tr>
<td>G.729</td>
<td>8</td>
<td>3.9</td>
<td>10ms</td>
</tr>
<tr>
<td>G.723.1</td>
<td>5.3/6.3</td>
<td>3.9</td>
<td>30ms</td>
</tr>
<tr>
<td>EFR GSM</td>
<td>12.2</td>
<td>4.5</td>
<td></td>
</tr>
</tbody>
</table>

Speech coders attributes

- Factors: bandwidth (sampling rate), bit rate, quality of reconstructed speech, noise robustness, computational complexity, delay, channel-error sensitivity.
- In practice, coding strategies are the trade-off among them.
- Telephone speech: bandwidth 300~3400Hz, sampled at 8kHz
- Wideband speech is used for a bandwidth of 50-7000Hz and a sampling rate of 16kHz
- Audio coding is used to dealing with high-fidelity audio signals with a sampling rate of 44.1kHz
Mean Opinion Score (MOS)

- The most widely used measure of quality is the Mean Opinion Score (MOS), which is the result of averaging opinion scores for a set of subjects.

- MOS is a numeric value computed as an average for a number of subjects, where each number maps to a subjective quality.

<table>
<thead>
<tr>
<th>Quality</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>excellent</td>
<td>5</td>
</tr>
<tr>
<td>good</td>
<td>4</td>
</tr>
<tr>
<td>fair</td>
<td>3</td>
</tr>
<tr>
<td>poor</td>
<td>2</td>
</tr>
<tr>
<td>bad</td>
<td>1</td>
</tr>
</tbody>
</table>

Organisations and standards

- The International Telecommunications Union (ITU)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Method</th>
<th>Bit rate (kb/s)</th>
<th>MOS</th>
<th>Complexity (MIPS)</th>
<th>Release Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU G.711</td>
<td>Mu/A-law PCM</td>
<td>64</td>
<td>4.3</td>
<td>0.01</td>
<td>1972</td>
</tr>
<tr>
<td>ITU G.729</td>
<td>CS-ACELP</td>
<td>8</td>
<td>4.0</td>
<td>20</td>
<td>1996</td>
</tr>
</tbody>
</table>

- The European Telecommunications Standards Institutes (ETSI)

<table>
<thead>
<tr>
<th>Standard</th>
<th>Method</th>
<th>Bit rate (kb/s)</th>
<th>MOS</th>
<th>Complexity (MIPS)</th>
<th>Release Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSM FR</td>
<td>RPE-LTP</td>
<td>13</td>
<td></td>
<td></td>
<td>1987</td>
</tr>
<tr>
<td>GSM AMR</td>
<td>ACELP</td>
<td>4.75-12.2</td>
<td></td>
<td></td>
<td>1998</td>
</tr>
</tbody>
</table>
Part II: Speech synthesis

- Speech coding
 - Waveform coding
 - Parametric coding (vocoder)
 - Analysis-by-synthesis
- Speech synthesis
 - Articulatory synthesis
 - Formant synthesis
 - Concatenative synthesis

Text-to-speech (TTS)

- TTS converts arbitrary text to intelligible and natural sounding speech.
- TTS is viewed as a speech coding system with an extremely high compression ratio.
- The text file that is input to a speech synthesizer is a form of coded speech. What is the bit rate?

[Diagram showing the process of text-to-speech generation]
Overview of TTS

Text analysis

- document structure detection
 - to provide context for later processes, e.g. sentence breaking and paragraph segmentation affect prosody.
 - e.g. email needs special care. This is easy :-)

- text normalization
 - to convert symbols, numbers into an orthographic transcription suitable for phonetic conversion.
 - Dr., 9 am, 10:25, 16/02/2006 (Europe), DK, OPEC

- linguistic analysis
 - to recover the syntactic and semantic features of words, phrases and sentences for both pronunciation and prosodic choices.
 - word type (name or verb), word sense (river or money bank)
Letter-to-sound

- LTS conversion provides phonetic pronunciation for any sequence of letters.

- Approaches
 - Dictionary lookup
 - If lookup fails, use rules.
 - knight: k -> /sil/ % _n
 - Kitten: k -> /k/
 - Classification and regression trees (CART) is commonly used which includes a set of yes-no questions and a procedure to select the best question at each node to grow the tree from the root.

Prosody

- Pause: indicating phrases and having break
- Pitch: accent, tone, intonation
- Duration
- Loudness

Block diagram of a prosody generation system
Speech synthesis

A module of a TTS system that generates the waveform.

Phonetic transcription + associated prosody → Speech synthesis → Waveform

Approaches:
- Limited-domain waveform concatenation, e.g. IVR
- Concatenative systems with no waveform modification, from arbitrary text
- Concatenative systems with waveform modification, for prosody consideration
- Rule-based systems – as opposed to the above data-driven synthesis. For example, formant synthesizer normally uses synthesis by rule.

Types according to the model

- **Articulatory synthesis**
 - uses a physical model of speech production including all the articulators

- **Formant synthesis**
 - uses a source-filter model, in which the filter is determined by slowly varying formant frequencies

- **Concatenative synthesis**
 - concatenates speech segments, where prosody modification plays a key role.
Formant speech synthesis

- A type of synthesis-by-rule where a set of rules are applied to decide how to modify the pitch, formant frequencies, and other parameters from one sound to another

- Block diagram

![Block diagram](image)

Concatenative speech synthesis

- Synthesis-by-rule generates **unnatural** speech
- Concatenative synthesis
 - A speech segment is generated by playing back waveform with matching phoneme string.
 - cut and paste, no rules required
 - completely natural segments
 - An utterance is synthesized by concatenating several speech segments. **Discontinuities** exist:
 - spectral discontinuities due to formant mismatch at the concatenation point
 - prosodic discontinuities due to pitch mismatch at the concatenation point
Key issues in concatenative synthesis

- Choice of unit
 - Speech segment: phoneme, diphone, word, sentence?
- Design of the set of speech segments
 - Set of speech segments: which and how many?
- Choice of speech segments
 - How to select the best string of speech segments from a given library of segments, given a phonetic string and its prosody?
- Modification of the prosody of a speech segment
 - To best match the desired output prosody

Choice of unit

Unit types in English (After Huang et al., 2001)

<table>
<thead>
<tr>
<th>Unit length</th>
<th>Unit type</th>
<th># units</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short</td>
<td>Phoneme</td>
<td>42</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Diphone</td>
<td>~1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Triphone</td>
<td>~30K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semisyllable</td>
<td>~2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Syllable</td>
<td>~15K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Word</td>
<td>100K-1.5M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phrase</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sentence</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>Long</td>
<td></td>
<td></td>
<td>High</td>
</tr>
</tbody>
</table>

For detailed information on the unit types and their lengths, refer to the reference (After Huang et al., 2001).
Attributes of speech synthesis system

- Delay
 - For interactive applications, < 200ms
- Memory resources
 - Rule-based, < 200 KB; Concatenative systems, 100 MB
- CPU resources
 - For concatenative systems, searching may be a problem
- Variable speed
 - e.g., fast speech; difficult for concatenative system
- Pitch control
 - e.g., a specific pitch requirement; difficult for concatenative
- Voice characteristics
 - e.g., specific voices like robot; difficult for concatenative

Difference between synthesis and coding

(After Rabiner & Levinson, 1981)
Summary

- Speech coding
- Speech synthesis

- Next lectures: Speech Recognition