2018 IEEE International Workshop on Machine Learning for Signal Processing
September 17-20, Aalborg, Denmark

PROGRAM

Website

Proceedings
Contents

WELCOME MESSAGE FROM THE GENERAL CHAIR ... 1

ORGANIZING COMMITTEE ... 3

PROGRAM.. 4

TUTORIAL 1 ... 13

TUTORIAL 2 ... 14

KEYNOTE 1 .. 15

KEYNOTE 2 .. 16

KEYNOTE 3 .. 17

KEYNOTE 4 .. 18

PROGRAM COMMITTEE .. 19

VENUE... 24

BANQUET... 25

SPONSOR.. 26

SUPPORTERS... 26
WELCOME MESSAGE FROM THE GENERAL CHAIR

On behalf of the organizing committee, it is with great pleasure that I welcome you to the IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP2018).

The 28th MLSP workshop is taking place at Comwell Hvide Hus, which is centrally located in Aalborg at Kildeparken, a park with many green areas and a variety of attractions. The workshop is the main annual event organized by the MLSP Technical Committee of the IEEE Signal Processing Society and will present the most recent advances in machine learning for signal processing through keynote talks, tutorials and single-track sessions.

As the driving force behind this wave of AI, machine learning provides essential tools for analyzing signals and data, both of which are plentiful and rapidly increasing in abundance today. The combination of machine learning and signal processing thus delivers powerful solutions to many real-world scientific and societal challenges. It is our hope that MSLP2018 will create an opportunity for scientists and engineers from both academia and industry to present their work, bring state-of-the-art forward, foster an environment for active and constructive exchange of ideas as well as reinforce or establish collaboration networks.

I am delighted to introduce our six insightful invited talks that address various contemporary topics. Regarding the two tutorials, the first one is “Opening the Black Box – How to Interpret Machine Learning Functions and Their Decisions” by Lars Kai Hansen and Laura Rieger (Technical Univ. of Denmark) and the second, “Bayesian Filtering and Smoothing Methods for Machine Learning” by Simo Särkkä (Aalto Univ.). The three keynote talks are 1) “The Bayesian Bonus: Benefits of Being Bayesian in the Deep Learning Era” by Max Welling (Univ. of Amsterdam), 2) “End to End Speech Recognition Systems Explored” by Dong Yu (Tencent AI Lab) and 3) “Temporal Models with Low-rank Spectrogram” by Cédric Févotte (CNRS). The 2018 edition of MLSP has further introduced an industrial keynote talk, which is delivered by Kaare Brandt Petersen (Implement Consulting Group) on the topic of “A Reality Check on Data Driven Business – What are the Real-Life Potential and Barriers?”.

MLSP2018 received 149 eligible submissions that were evaluated by at least two anonymous reviewers. We adopted the process of double blind review and authors' rebuttal. The program chairs worked strenuously to include as many excellent works into the technical program as possible. In the end, 76 papers were chosen for presentations in the oral and poster sessions, yielding a 51% acceptance rate.

We would like to express our deepest gratitude to Jan Larsen (Technical University of Denmark), who was the Web and Publication Chair of MLSP2018 and a member of the core organizing team. Jan provided an all-in-one highly professional conference system and took care of the time-consuming job of managing the website for paper submission, review and publications. Jan was not only a Web and Publication Chair but also an active advisor and
readily available for sharing his experience. Jan’s contribution was far beyond the 2018 edition of MLSP. He had been a key figure in shaping the MLSP/NNSP (Neural Networks for Signal Processing) Technical Committee and the series of MLSP/NNSP workshops since the beginning. He participated in every single MLSP/NNSP workshop since its introduction in 1991. With profound sadness, we will be missing Jan at MLSP2018 due to his sudden passing. He will be dearly missed by all who knew him.

Organizing an international event like MLSP requires a great deal of collective effort. Therefore, I am greatly thankful to the organizing team, the local team, the program committee, the reviewers, the tutorial and keynote speakers, the session chairs, the authors, our sponsors and the IEEE for their strong support.

I wish all participants a pleasant stay here in Aalborg and hope that MLSP2018 will be a memorable and an enjoyable event for all of you.

Zheng-Hua Tan (Aalborg University, Denmark)
MLSP2018 General Chair
ORGANIZING COMMITTEE

General Chair
Zheng-Hua Tan, Aalborg University, Denmark
Contact general chair at mlsp2018-chair@conwiz.dk

Program Chairs
Nelly Pustelnik, ENS Lyon, France
Zhanyu Ma, Beijing University of Posts and Telecommunications, China
Contact program chairs at mlsp2018-programchairs@conwiz.dk

Finance Chair
Børge Lindberg, Aalborg University, Denmark
Contact finance chair at mlsp2018-regchair@conwiz.dk

Data Competition Chairs
Karim Seghouane, University of Melbourne, Australia
Yuejie Chi, Ohio State University, USA
Contact competition chairs at mlsp2018-datacompetition@conwiz.dk

Publicity and Social Media Chairs
Marc Van Hulle, KU Leuven, Belgium
Jen-Tzung Chien, National Chiao Tung University, Taiwan
Contact publicity chair at mlsp2018-publicity@conwiz.dk

Web and Publication Chair
Jan Larsen, Technical University of Denmark, Denmark

Advisory Committee
Søren Holdt Jensen, Aalborg University, Denmark
Theodoridis Sergios, University of Athens, Greece
Raviv Raich, Oregon State University, USA
Vince Calhoun, University of New Mexico, USA
Monday September 17, 2018

9:00-17:00 2nd floor Registration

13:15- Kilden, Opening Greeting
13:30 2nd floor Chair: Zheng-Hua Tan, Aalborg University, Denmark

13:30- Kilden, Keynote Lecture: The Bayesian Bonus: Benefits of Being Bayesian
14:30 2nd floor in the Deep Learning Era
 Max Welling
 University of Amsterdam, the Netherlands
 Chair: Børge Lindberg, Aalborg University, Denmark

14:30-15:00 2nd floor Coffee Break

15:00- Kilden, Tutorial: Opening the Black Box - How to Interpret Machine
16:30 2nd floor Learning Functions and Their Decisions
 Lars Kai Hansen and Laura Rieger
 Section for Cognitive Systems, DTU Compute, Technical University
 of Denmark, Denmark
 Chair: Ulisses M. Braga-Neto, Texas A&M University, USA

16:45- Kilden, Tutorial: Bayesian Filtering and Smoothing Methods for Machine
18:15 2nd floor Learning
 Simo Särkkä
 Aalto University, Finland
 Chair: Zhanyu Ma, Beijing University of Posts and
 Telecommunications, China

18:30- Kilden, MLSP 2018 Data Competition: Map Synchronization (video)
19:00 2nd floor Yuxin Chen, Yuejie Chi, Junting Dong, Qixing Huang, Kaixiang Lei,
 Haoyun Wang, Qianqian Wang, Kun Xu, Xiaowei Zhou

19:00-20:00 Ground floor Welcome Reception Hosted by the City of Aalborg

Tuesday September 18, 2018

8:30-12:00 2nd floor Registration

8:30-9:00 2nd floor Welcome Refreshment
<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Session/Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00-10:00</td>
<td>Kilden, 2nd floor</td>
<td>Keynote Lecture: End-to-end Speech Recognition Systems Explored
Dong Yu
Tencent AI Lab, Seattle, USA
Chair: Zheng-Hua Tan, Aalborg University, Denmark</td>
</tr>
<tr>
<td>10:00-10:30</td>
<td>2nd floor</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>12:30-14:00</td>
<td>1st floor</td>
<td>Lunch</td>
</tr>
</tbody>
</table>
| 14:00-16:00 | Kilden, 2nd floor | **Lecture Session 2: Bayesian learning and modeling**
Chair: James Reilly, McMaster University, Canada
14:00 **Uncertainty Bounds For Kernel-Based Regression: A Bayesian SPS Approach**
Algo Carè, Gianluigi Pillonetto, Marco Campi
14:20 **Markov Recurrent Neural Networks**
Che-Yu Kuo, Jen-Tzung Chien
14:40 **Learning Stochastic Differential Equations With Gaussian Processes Without Gradient Matching**
Cagatay Yildiz, Markus Heinonen, Jukka Intosalmi, Henrik Mannerström, Harri Lähdesmäki
15:00 Scaling Bayesian Optimization Up To Higher Dimensions: A Review And Comparison Of Recent Algorithms
Benoît Choffin, Naonori Ueda

15:20 Correcting Boundary Over-Exploration Deficiencies In Bayesian Optimization With Virtual Derivative Sign Observations
Eero Siivola, Aki Vehtari, Javier González, Jarno Vanhatalo, Michael Riis Andersen

15:40 Computational Optimization For Normal Form Realization Of Bayesian Model Graphs
Giovanni Di Gennaro, Amedeo Buonanno, Francesco A. N. Palmieri

16:00-16:30 2nd floor
Coffee Break

16:30-18:30 Kilden, 2nd floor
Poster Session 1: Bayesian learning and modeling
Chair: Gianluigi Pillonetto, University of Padova, Italy

16:30 Model-Order Selection In Statistical Shape Models
Alma Eguizabal, Peter J. Schreier, David Ramirez

16:30 Optimal Classifier Model Status Selection Using Bayes Boundary Uncertainty
David Ha, Emilie Delattre, Yuya Tomotoshi, Masahiro Senda, Hideyuki Watanabe, Shigeru Katagiri, Miho Ohsaki

16:30 Network Reconstruction From Time-Course Perturbation Data Using Multivariate Gaussian Processes
Sara Al-Sayed, Heinz Koeppl

16:30 Space-Time Extension Of The MEM Approach For Electromagnetic Neuroimaging
Marie-Christine Roubaud, Jean-Marc Lina, Julie Carrier, Bruno Torrésani

16:30 Online Variational Message Passing In The Hierarchical Gaussian Filter
Ismail Senoz, Bert De Vries

16:30 Nonlinear Probabilistic Latent Variable Models For Groupwise Correspondence Analysis In Brain Structures
Hernan Felipe Garcia, Alvaro Angel Orozco, Mauricio Alexander Alvarez

16:30 Guaranteed Deterministic Bounds On The Total Variation Distance Between Univariate Mixtures
Frank Nielsen, Ke Sun

16:30 Mixture Representation Of The MatÉrn Class With Applications In State Space Approximations And Bayesian Quadrature
Filip Tronarp, Toni Karvonen, Simo Särkkä
16:30 *Dynamic Bayesian Knowledge Transfer Between A Pair Of Kalman Filters*
Milan Papez, Anthony Paul Quinn

16:30 *Causality Analysis Based On Matrix Transfer Entropy*
Rongjin Ma, Badong Chen, Jianfeng Xiao, Jingli Shao

Wednesday September 19, 2018

- **8:30-12:00** 2nd floor Registration

- **8:30-9:00** 2nd floor Welcome Refreshment

- **9:00-10:00** Kilden, 2nd floor Keynote Lecture: *Temporal models with low-rank spectrogram*
Cédric Févotte
CNRS, Toulouse, France
Chair: Nelly Pustelnik, ENS Lyon, France

- **10:00-10:30** 1st and 2nd floor Coffee Break

- **10:30-12:30** Kilden, 2nd floor Lecture Session 3: *Semi-supervised and Unsupervised learning*
Chair: David Jonathan Miller, Penn State University, USA

 - **10:30** Unsupervised Parsimonious Cluster-Based Anomaly Detection (PCAD)
 David Jonathan Miller, George Kesidis, Zhichong Qiu

 - **10:50** Stochastic Quantum Information Processing, With Applications To Blind Quantum System Identification And Source Separation
 Yannick Deville, Alain Deville

 - **11:10** Distributed Semi-Supervised Multi-Label Classification
 Zhen Xu, Ying Liu

 - **11:30** Dynamical Component Analysis (dyca): Dimensionality Reduction For High-Dimensional Deterministic Time-Series
 Bastian Seifert, Katharina Korn, Steffen Hartmann, Christian Uhl

 - **11:50** Variational Bayesian Partially Observed Non-Negative Tensor Factorization
 Jesper L. Hinrich, Søren F. V. Nielsen, Kristoffer H. Madsen, Morten Mørup

- **12:30-13:30** 1st floor Lunch
Lecture Session 4: Sparse learning
Chair: Pierre Chainais, University Lille, France

13:30 Sparse Bayesian Binary Logistic Regression Using The Split-And-Augmented Gibbs Sampler
Maxime Vono, Nicolas Dobigeon, Pierre Chainais

13:50 Regularization Parameter-Free Convolutional Sparse Coding Via Projections Onto The L1-Ball And The Discrepancy Principle
Paul Rodriguez

14:10 BALSON: Bayesian Least Squares Optimization With Nonnegative L1-Norm Constraint
Jiyang Xie, Zhanhu Ma, Guoqiang Zhang, Jing-Hao Xue, Jen-Tzung Chien, Zhiqing Lin, Jun Guo

14:30 Joint Topology Learning And Graph Signal Recovery Via Kalman Filter In Causal Data Processes
Mahmoud Ramezani-Mayiami

14:50 Learning Sparse Structured Ensembles With Stochastic Gradient MCMC Sampling And Network Pruning
Yichi Zhang, Zhijian Ou

15:10 Efficient Separable Filter Estimation Using Rank-1 Convolutional Dictionary Learning
Gustavo Silva, Jorge Quesada, Paul Rodríguez

Coffee Break

Poster Session 2: Unsupervised to supervised learning
Chair: Paul Rodriguez, Pontifical Catholic University of Peru, Peru

16:00 Anomaly Detection Of Attacks (ada) On Dnn Classifiers At Test Time
David Jonathan Miller, Yujia Wang, George Kesidis

16:00 K-Svd With A Real L0 Optimization: Application To Image Denoising
Yuan Liu, Stéphane Canu, Paul Honeine, Su Ruan

16:00 Generalization Bounds For Domain Adaptation Via Domain Transformations
Elif Vural

16:00 Greedy Salient Dictionary Learning With Optimal Point Reconstruction For Activity Video Summarization
Ioannis Mademlis, Anastasios Tefas, Ioannis Pitas

16:00 A Multi-Layer Perceptron Applied To Number Of Target Indication For Direction-Of-Arrival Estimation In Automotive Radar Sensors
Markus Gardill, Jonas Fuchs, Christian Frank, Robert Weigel
16:00
Enhanced Noisy Sparse Subspace Clustering Via Reweighted L1-Minimization
Jwo-Yuh Wu, Liang-Chi Huang, Ming-Hsun Yang, Ling-Hua Chang, Chun-Hung Liu

16:00
Acoustic Scene Classification: A Competition Review
Shayan Gharib, Honain Derrar, Daisuke Niizumi, Tuukka Senttula, Janne Tommola, Toni Heittola, Tuomas Virtanen, Heikki Huttunen

16:00
Generalizable Supervised Manifold Learning Via Lipschitz Continuous Interpolators
Cem Ornek, Elif Vural

16:00
Remote Sensing Image Regression For Heterogeneous Change Detection
Luigi Tommaso Luppino, Filippo Maria Bianchi, Gabriele Moser, Stian Normann Anfinsen

16:00
Graph-Regularized Fast Low-Rank Matrix Approximation Using The Nyström Method For Clustering
Jieun Lee, Yoonsik Choe

16:00
APE: Archetypal-Prototypal Embeddings For Audio Classification
Arshdeep Singh, Anshul Thakur, Padmanabhan Rajan

16:00
Label Propagation For Learning With Label Proportions
Rafael Poyiadzi, Raul Santos-Rodriguez, Niall Twomey

16:00
Detecting Industrial Fouling By Monotonicity During Ultrasonic Cleaning
Chang Rajani, Arto Klami, Ari Salmi, Timo Rauhala, Edward Häggström, Petri Myllymäki

16:00
Multiclass SVM With Hierarchical Interaction: Application To Face Classification
Mingyuan Jiu, Nelly Pustelnik, Lin Qi

16:00
Frame-Level Proximity And Touch Recognition Using Capacitive Sensing And Semi-Supervised Sequential Modeling
Tobias Fischer, Mariano Etchart, Ernesto Biempica

18:45- 22:00
Musikkens Hus
Banquet

Thursday September 20, 2018

8:30-12:00
2nd floor
Registration

8:30-9:00
2nd floor
Welcome Refreshment
Keynote Lecture: Industrial Keynote: A reality check on data driven business-what are the real life potential and barriers?
Kaare Brandt Petersen
Implement Consulting Group, Copenhagen, Denmark
Chair: Søren Holdt Jensen, Aalborg University, Denmark

Coffee Break

Poster Session 3: Neural network and deep learning
Chair: Robert Jensen, The Arctic University of Norway, Norway

Simple Deep Learning Network Via Tensor-Train Haar-Wavelet Decomposition Without Retraining
Wei-Zhi Huang, Sung-Hsien Hsieh, Chun-Shien Lu, Soo-Chang Pei

Evaluation Of Loss Functions For Estimation Of Latent Vectors From GAN
Arun Patro, Vishnu Vardhan Makkapati, Jayanta Mukhopadhyay

Quality Preserving Face De-Identification Against Deep CNNs
Panteleimon Chriskos, Rosen Zhelev, Vasileios Mygdalis, Ioannis Pitas

Affective State Recognition Based On Eye Gaze Analysis Using Two-Stream Convolutional Networks
Christina Chrysouli, Nicholas Vretos, Petros Daras

Deep Learning Based Speed Estimation For Constraining Strapdown Inertial Navigation On Smartphones
Santiago Cortes Reina, Arno Solin, Juho Kannala

Convolutional Neural Networks For Noise Signal Recognition
Ruslan J. Portsev, Andrey V. Makarenko

Using Metaheuristics For Hyper-Parameter Optimization Of Convolutional Neural Networks
Victoria Bibaeva

Convex Likelihood Alignments For Bioacoustic Classification
Anshul Thakur, Arshdeep Singh, Padmanabhan Rajan

Efficient Cyclic Learning Rate Schedules And Their Evaluations For Neural Network Ensemble
Minoru Mori, Masahiro Nakano

Deep Neural Networks For Application Awareness In SDN-Based Network
Jun Xu, Jingyu Wang, Qi Qi, Bo He, Haifeng Sun

Light Field Based Face Recognition Via A Fused Deep Representation
Alireza Sepas-Moghaddam, Paulo Lobato Correia, Kamal Nasrollahi, Thomas B Moeslund, Fernando Pereira
10:30 A Characterization Of The Edge Of Criticality In Binary Echo State Networks
Pietro Verzelli, Lorenzo Livi, Cesare Alippi

10:30 Image Deblurring And Super-Resolution Using Deep Convolutional Neural Networks
Fatma Albluwi, Vladimir A. Krylov, Rozenn Dahyot

10:30 Detection Of Cut Points For Automatic Music Rearrangement
Daniel Stoller, Vincent Akkermans, Simon Dixon

12:30-
13:30 1st floor Lunch

13:30-
14:30 2nd floor Lecture Session 5: Neural network and deep learning
Chair: Jen-Tzung Chien, National Chiao Tung University, Taiwan

13:30 Recurrent Neural Networks With Flexible Gates Using Kernel Activation Functions
Simone Scardapane, Steven Van Vaerenbergh, Danilo Commumiello, Simone Totaro, Aurelio Uncini

13:50 Sketchsegnet: A RNN Model For Labeling Sketch Strokes
Xingyuan Wu, Yonggang Qi, Jun Liu, Jie Yang

14:10 Supportive Attention In End-To-End Memory Networks
Jen-Tzung Chien, Ting-An Lin

14:30-
15:00 2nd floor Coffee Break

15:00-
17:00 2nd floor Poster Session 4: Biomedical applications
Chair: Simo Särkkä, Aalto University, Finland

15:00 Machine Learning As Digital Therapy Assessment For Mobile Gait Rehabilitation
Javier Conte Alcaraz, Sanam Moghaddamnia, Nils Poschadel, Jürgen Peissig

15:00 Spectro-Temporal ECG Analysis For Atrial Fibrillation Detection
Zheng Zhao, Simo Särkkä, Ali Bahrami Rad

15:00 Cross-Corpus EEG-Based Emotion Recognition
Soheil Rayatdoost, Mohammad Soleymani

15:00 On-Line Bayesian Parameter Estimation In Electrocardiogram State Space Models
Kimmo Suotsalo, Simo Särkkä

15:00 A Deep Learning Architecture To Detect Events In EEG Signals During Sleep
Stanislas Chambon, Valentin Thorey, Pierrick J Arnal, Emmanuel Mignot, Alexandre Gramfort

15:00 Single-Channel EEG Classification By Multi-Channel Tensor Subspace Learning And Regression
Simon Van Eyndhoven, Martijn Boussé, Borbála Hunyadi, Lieven De Lathauwer, Sabine Van Huffel

15:00 Uncertainty Modeling And Interpretability In Convolutional Neural Networks For Polyp Segmentation
Kristoffer Knutsen Wickstrøm, Michael Kampffmeyer, Robert Jenssen

15:00 Inference Of Gene Regulatory Networks By Maximum-Likelihood Adaptive Filtering And Discrete Fish School Search
Yukun Tan, Fernando Buarque Lima Neto, Ulisses Braga Neto

15:00 Controlling Blood Glucose Levels In Patients With Type 1 Diabetes Using Fitted Q-Iterations And Functional Features
Jonas Nordhaug Myhre, Ilkka Kalervo Launonen, Susan Wei, Fred Godtliesen

15:00 Chronic Wound Tissue Classification Using Convolutional Networks And Color Space Reduction
Vitor Godeiro, José Francisco Silva Neto, Bruno Motta De Carvalho, Julianny Ferraz, Bruno Santana, Renata Antonaci Gama

17:00 Closing Ceremony
TUTORIAL 1

Bayesian Filtering and Smoothing Methods for Machine Learning

Professor Simo Särkkä

Department of Electrical Engineering and Automation
Aalto University, Helsinki, Finland

Biography:
Currently, Dr. Särkkä is an Associate Professor with Aalto University, Technical Advisor of IndoorAtlas Ltd., and an Adjunct Professor with Tampere University of Technology and Lappeenranta University of Technology. In 2013 he was a Visiting Professor with the Department of Statistics of Oxford University and in 2011 he was a Visiting Scholar with the Department of Engineering at the University of Cambridge, UK. His research interests are in multi-sensor data processing systems with applications in location sensing, health technology, machine learning, inverse problems, and brain imaging. He has authored or coauthored ~100 peer-reviewed scientific articles and his book "Bayesian Filtering and Smoothing" along with its Chinese translation were recently published via the Cambridge University Press. His latest book "Applied Stochastic Differential Equations" is published via the Cambridge University Press in 2018. He is a Senior Member of IEEE, serving as an Associate Editor of IEEE Signal Processing Letters, and is a member of IEEE Machine Learning for Signal Processing Technical Committee.

Abstract:
Machine learning methods that are able to continuously learn from continuous streams of large amounts of data are becoming more and more important in applications like ubiquitous sensor systems, self-driving cars, smartphone apps, and artificial intelligence (AI) systems. In those applications a separate training phase is not available, but instead, the methods must be able to learn from the data in real time. Due to this constraint, it is beneficial to use recursive Bayesian estimation methodology, also called Bayesian filtering and smoothing, to both enable the online learning and as well as to speed up the learning. The aim of this tutorial is to give an overview of the state-of-the-art in this kind of methods.

Tentative outline
- From linear regression to Kalman filtering and beyond
- Recursive Bayesian estimation and Bayesian filtering and smoothing
- State-space representation of Gaussian process regression
- Spatiotemporal learning with recursive Bayesian estimation
- Hyper-parameter learning methods
- Applications will be presented aside with the methods
Opening the Black Box - How to Interpret Machine Learning Functions and Their Decisions

Professor Lars Kai Hansen and PhD Student Laura Rieger

Section for Cognitive Systems, DTU Compute
Technical University of Denmark

Biography:
Lars Kai Hansen has MSc and PhD degrees in physics from University of Copenhagen. Since 1990 he has been with the Technical University of Denmark, where he heads the Section for Cognitive Systems. He has published more than 300 contributions on machine learning, signal processing, and applications in AI and cognitive systems. His research has been generously funded by the Danish Research Councils and private foundations, the European Union, and the US National Institutes of Health. He has made seminal contributions to machine learning including the introduction of ensemble methods ('90) and to functional neuroimaging including the first brain state decoding work based on PET ('94) and fMRI ('97). In the context of neuroimaging he has developed a suite of methods for visualizing machine learning models and quantification of uncertainty. In 2011 he was elected "Catedra de Excelencia" at UC3M Madrid, Spain.

Laura Rieger has dual MSc degrees in Computer Science from the Technical University Berlin and the Korea Advanced Institute of Science and Technology. Since fall 2017, she is a PhD student at DTU Compute, working with Prof. Lars Kai Hansen in the Cognitive Systems section. Her research interests include interpretability and uncertainty of neural networks, deep learning and safety in machine learning.

Abstract:
To "let the data speak" machine learning is often based on weak model assumptions - leading to the general notion of machine learning as a black box approach. Indeed, much machine learning research has been devoted to developing expressive representations and algorithms with high statistical and computational efficiency. However, in certain domains - such as systems neuroscience - interpretability and accountability are key to successful application. We will give an introduction to classic and modern tools for understanding machine learning representations and inference with a specific focus on uncertainty quantification. The tutorial is illustrated by applications in bio-medicine, computer vision and natural language processing.
KEYNOTE 1

The Bayesian Bonus: Benefits of Being Bayesian in the Deep Learning Era

Prof. Dr. Max Welling

University of Amsterdam, the Netherlands

Biography:

Prof. Dr. Max Welling is a research chair in Machine Learning at the University of Amsterdam and a VP Technologies at Qualcomm. He has a secondary appointment as a senior fellow at the Canadian Institute for Advanced Research (CIFAR). He is co-founder of Scyfer BV, a university spin-off in deep learning which got acquired by Qualcomm in summer 2017. In the past he held postdoctoral positions at Caltech (98-00), UCL (00-01) and the U. Toronto (01-03). He received his PhD in 98 under supervision of Nobel laureate Prof. G. ’t Hooft. Max Welling has served as associate editor in chief of IEEE TPAMI from 2011-2015 (impact factor 4.8). He serves on the board of the NIPS foundation since 2015 (the largest conference in machine learning) and has been program chair and general chair of NIPS in 2013 and 2014 respectively. He was also program chair of AISTATS in 2009 and ECCV in 2016 and general chair of MIDL 2018. He has served on the editorial boards of JMLR and JML and was an associate editor for Neurocomputing, JCGS and TPAMI. He received multiple grants from Google, Facebook, Yahoo, NSF, NIH, NWO and ONR-MURI among which an NSF career grant in 2005. He is recipient of the ECCV Koenderink Prize in 2010. Welling is in the board of the Data Science Research Center in Amsterdam, he directs the Amsterdam Machine Learning Lab (AMLAB), and co-directs the Qualcomm-UvA deep learning lab (QUVA) and the Bosch-UvA Deep Learning lab (DELTA). Max Welling has over 200 scientific publications in machine learning, computer vision, statistics and physics.

Abstract:

Deep learning is all too often considered as a pure optimization problem instead of a statistical estimation problem. But key to any machine learning algorithm are statistical concepts such as overfitting and the bias-variance tradeoff. Bayesian statistics provides a beautiful consistent statistical framework that can be combined with deep learning resulting in a research field called Bayesian Deep Learning (BDL). In this talk I will discuss a number of advantages of BDL, among which a natural protection against overfitting, confidence estimation, better robustness against adversarial attacks, better privacy preservation and a framework to compress and quantize deep architectures. In the second part of the talk I will focus on making deep learning more power and memory efficient. There are a number of reasons why I believe this is an important direction for research, among which the economic feasibility of large scale applications of AI and the thermal ceiling of AI on the edge. I will provide some examples of how BDL has guided us in developing these efficient deep learning implementations.
KEYNOTE 2

Temporal models with low-rank spectrogram

CNRS senior researcher Cédric Févotte

CNRS, Toulouse, France

Biography:
Cédric Févotte is a CNRS senior researcher at Institut de Recherche en Informatique de Toulouse (IRIT). Previously, he has been a CNRS researcher at Laboratoire Lagrange (Nice, 2013-2016) & Télécom ParisTech (2007-2013), a research engineer at Mist-Technologies (the startup that became Audionamix, 2006-2007) and a postdoc at University of Cambridge (2003-2006). He holds MEng and PhD degrees in EECS from École Centrale de Nantes. His research interests concern statistical signal processing and machine learning, in particular for source separation and inverse problems. He has been a member of the IEEE Machine Learning for Signal Processing technical committee (2012-2018) and a member of SPARS steering committee since 2018. He has been an associate editor for the IEEE Transactions on Signal Processing since 2014. In 2014, he was the co-recipient of an IEEE Signal Processing Society Best Paper Award for his work on audio source separation using multichannel nonnegative matrix factorisation. He is the principal investigator of the European Research Council (ERC) project FACTORY (New paradigms for latent factor estimation, 2016-2021).

Abstract:
Various state-of-the-art signal decomposition techniques rely on the low-rank factorisation of a time-frequency (t-f) transform. In particular, nonnegative matrix factorisation (NMF) of the spectrogram has been considered in many audio applications (source separation, speech enhancement, music transcription). This is an *analysis* approach in the sense that the factorisation is applied to the squared magnitude of the analysis coefficients returned by the t-f transform. In the first part of the talk, I will present a *synthesis* approach, where low-rankness is imposed to the synthesis coefficients of the data signal over a given t-f dictionary (such as a Gabor frame). The proposed paradigm bridges t-f synthesis modelling and traditional analysis-based NMF approaches, with enhanced modelling capabilities (e.g., multilayer hybrid representations). Besides, in the classical NMF approach, the spectrogram acts as a pre-processing of the raw data using an off-the-shelf transform. In the second part of the talk, I will show how to relax the choice of a pre-fixed transform and learn a short-time orthogonal transform *together* with the factorisation. The conceptual and practical benefits of the proposed approaches will be illustrated with audio experiments.
End-to-end Speech Recognition Systems Explored

Distinguished Scientist and Vice General Manager, Dong Yu

Tencent AI Lab, Seattle, USA

Biography:
Dr. Dong Yu is a distinguished scientist and vice general manager at Tencent AI Lab, an IEEE Fellow and an ACM Distinguished Scientist. Before joining Tencent in 2017, he was a principal researcher at Microsoft Research, where he joined in 1998. His research has been focusing on speech recognition and other applications of machine learning techniques. He has published two monographs and 160+ papers. His works have been cited over 17k times per Google Scholar and have been recognized by the prestigious IEEE Signal Processing Society 2013 and 2016 best paper award.

Dr. Dong Yu currently is serving as a member of the IEEE Speech and Language Processing Technical Committee (2013-2018) and a distinguished lecturer of APSIPA (2017-2018). He has served as an associate editor of the IEEE/ACM transactions on audio, speech, and language processing (2011-2015), an associate editor of the IEEE signal processing magazine (2008-2011), and members of organization and technical committees of many conferences and workshops.

Abstract:
In this talk, I will introduce and compare the most promising end-to-end speech recognition systems such as Connectionist Temporal Classification (CTC), RNN Transducer, RNN aligner, and sequence-to-sequence translation model with attention. I will discuss advantages and shortcomings of each setup, present key observations we have made when exploring these models, and discuss possible further developments.
Industrial Keynote: A Reality Check on Data Driven Business -
What are the Real Life Potential and Barriers?

Data Science Evangelist Dr. Kaare Brandt Petersen
Implement Consulting Group, Copenhagen, Denmark

Biography:
Kaare Brandt Petersen is an expert and enthusiast on data analysis and mathematical modeling for improvement of products, services, work processes, insight and life in general. He is also a passionate participant in discussions on how data analysis impacts the development of society, change the business landscape, and to what extend the human brain is suited for doing data analysis on its own. He is a driver for advance data analysis in Implement Consulting Group and is on a journey to find practical value of the modern advanced data analysis methods. Previously he has had positions such Director of Education & Academics in SAS, Business Manager and Advisor in SAS, Consultant and partner in Epital and as post doc at DTU. He holds a Ph.d. in mathematical modelling from Technical University of Denmark and has some scientific publications and The Matrix Cookbook on his academic resume. Today Kaare Brandt Petersen still has contact to the universities as censor at DTU, part of the program committee at Symposium i Anvendt Statistik and part of the Business employment panel at ITU.

Abstract:
When talking about data driven business we often look to the tech giants and seek inspiration and learning points about how to use data to be better at what we do. But a typical organization does not look like one of the tech giants at all and if such an organization want to start using data and has Google as point of reference, they are in for a rough ride. In this talk, I will present the key findings of interviewing people in many organizations about their use of advanced data analysis and their roadmap, expectations and aspirations about being data driven. Interestingly there are some notable differences from the classical high-profile statements and we also look into the human factor of the data driven future.
PROGRAM COMMITTEE

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdelhak M. Zoubir</td>
<td>Technische Universität Darmstadt, Germany</td>
</tr>
<tr>
<td>Abd-Krim Seghouane</td>
<td>University of Melbourne, Australia</td>
</tr>
<tr>
<td>Aggelos Pikrakis</td>
<td>University of Piraeus, Greece</td>
</tr>
<tr>
<td>Alain Rakotomamonjy</td>
<td>University of Rouen, France</td>
</tr>
<tr>
<td>Alberto Carini</td>
<td>University of Urbino, Italy</td>
</tr>
<tr>
<td>Alberto Gonzalez</td>
<td>iTEAM - Polytechnic University of Valencia, Spain</td>
</tr>
<tr>
<td>Alexey Ozerov</td>
<td>Technicolor Research and Innovation, France</td>
</tr>
<tr>
<td>Ali H. Sayed</td>
<td>University of California-LA, USA</td>
</tr>
<tr>
<td>Amedeo Buonanno</td>
<td>Seconda Università di Napoli, Italy</td>
</tr>
<tr>
<td>Amir Hussain</td>
<td>University of Stirling, UK</td>
</tr>
<tr>
<td>Anand Sarwate</td>
<td>Rutgers, The State University of New Jersey, USA</td>
</tr>
<tr>
<td>Andreas Wendemuth</td>
<td>Otto von Guericke University Magdeburg, Germany</td>
</tr>
<tr>
<td>Andreas Ziehe</td>
<td>TU Berlin, Germany</td>
</tr>
<tr>
<td>Andrzej Cichocki</td>
<td>Brain Science Institute, Riken, Japan</td>
</tr>
<tr>
<td>Arie Yeredor</td>
<td>Tel Aviv University, Israel</td>
</tr>
<tr>
<td>Arye Nehorai</td>
<td>Washington University in St. Louis, USA</td>
</tr>
<tr>
<td>Asoke K. Nandi</td>
<td>Brunel University, UK</td>
</tr>
<tr>
<td>Augusto Sarti</td>
<td>Politecnico di Milano, Italy</td>
</tr>
<tr>
<td>Aurelio Uncini</td>
<td>Università di Roma La Sapienza, Italy</td>
</tr>
<tr>
<td>Akisato Kimura</td>
<td>NTT, Japan</td>
</tr>
<tr>
<td>Badong Chen</td>
<td>Xian Jiaotong University, China</td>
</tr>
<tr>
<td>Barbara Cannas</td>
<td>University of Cagliari, Italy</td>
</tr>
<tr>
<td>Benoit Champagne</td>
<td>McGill University, Canada</td>
</tr>
<tr>
<td>Bhaskar D. Rao</td>
<td>University of California-San Diego, USA</td>
</tr>
<tr>
<td>Björn Schuller</td>
<td>University of Passau, Germany</td>
</tr>
<tr>
<td>Bjorn Sand Jensen</td>
<td>University of Glasgow, UK</td>
</tr>
<tr>
<td>Brendt Wohlberg</td>
<td>Los Alamos National Lab, USA</td>
</tr>
<tr>
<td>Cédric Févotte</td>
<td>Institut de Recherche en Informatique de Toulouse, France</td>
</tr>
<tr>
<td>Cédric Richard</td>
<td>University of Nice Sophia Antipolis, France</td>
</tr>
<tr>
<td>Catherine Huang</td>
<td>Intel Labs, USA</td>
</tr>
<tr>
<td>Christian Jutten</td>
<td>Université Joseph Fourier of Grenoble, France</td>
</tr>
<tr>
<td>Claudio Ceruti</td>
<td>Università degli Studi di Milano, Italy</td>
</tr>
<tr>
<td>Constantine Kotropoulos</td>
<td>University of Thessaloniki, Greece</td>
</tr>
<tr>
<td>Dan Stowell</td>
<td>Queen Mary University of London, UK</td>
</tr>
<tr>
<td>Danilo Comminiello</td>
<td>Sapienza University of Rome, Italy</td>
</tr>
<tr>
<td>Danilo Mandic</td>
<td>Imperial College, UK</td>
</tr>
<tr>
<td>David J. Miller</td>
<td>Penn State University, USA</td>
</tr>
<tr>
<td>David Luengo</td>
<td>Universidad Politécnica de Madrid, Spain</td>
</tr>
<tr>
<td>David Wipf</td>
<td>Microsoft Research, China</td>
</tr>
</tbody>
</table>
Paras Smaragdis University of Illinois, USA
Peder Olsen IBM Research, USA
Peter Ahrendt Teknologisk Institut, Denmark
Pierre Chainais University Lille, France
Qi Zhao NUS, Singapore
Rémi Gribonval Centre Inria Rennes - Bretagne Atlantique, France
Raffaele Parisi Sapienza University of Rome, Italy
Raviv Raich Oregon State University, USA
Rita Singh Carnegie Mellon University, USA
Robert Janssen The Arctic University of Norway, Norway
Rodrigo Capobianco Guido São Paulo State University, Brazil
Ruizhu Huang University of Texas, USA
S.Y. Kung Princeton University, USA
Saeid Sanei University of Surrey, UK
Saiprasad Ravishankar University of Michigan, USA
Scott Douglas Southern Methodist University, USA
Sergios Theodoridis University of Athens, Greece
Sébastien Marcel IDIAP, Switzerland
Shigeru Katagiri Doshisha University, Japan
Simo Sarkka Aalto University, Finland
Simone Scardapane Sapienza University of Rome, Italy
Simos Chouvardas Huawei, France
Stéphane Mallat École Normale Supérieure, France
Stamatis Lefkimmiatis Skoltech, Russia
Stefania Cecchi Università Politecnica delle Marche, Italy
Stefano Squartini Università Politecnica delle Marche, Italy
Steven J. Rennie IBM, USA
Steven van de Par University of Oldenburg, Germany
Steven Van Vaerenbergh University of Cantabria, Spain
Suleyman S. Kozat Bilkent University, Turkey
Sven Ewan Shepstone Bang & Olufsen A/S, Denmark
Shinji Watanabe Mitsubishi Electric Research Laboratories (MERL), USA
Tülay Adali University of Maryland Baltimore County, USA
Taylan Cemgil Bogazici University, Turkey
Tomi Kinnunen University of Eastern Finland, Finland
Tuomas Virtanen Tampere University of Technology, Finland
Teng-Yok Lee Mitsubishi Electric Research Laboratories (MERL), USA
Thomas Arildsen Aalborg University, Denmark
Tomoharu Iwata NTT, Japan
Tomoko Matsui The Institute of Statistical Mathematic, Japan
Ulisses M. Braga-Neto Texas A&M University, USA
Venkatesh Saligrama Boston University, USA
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vince D. Calhoun</td>
<td>University of New Mexico, USA</td>
</tr>
<tr>
<td>Vincent Tan</td>
<td>National University of Singapore, Singapore</td>
</tr>
<tr>
<td>Volkan Cevher</td>
<td>EPFL, Switzerland</td>
</tr>
<tr>
<td>Waheed Bajwa</td>
<td>Rutgers University, USA</td>
</tr>
<tr>
<td>Wee Peng Tay</td>
<td>Nanyang Technological University, Singapore</td>
</tr>
<tr>
<td>Weifeng Liu</td>
<td>Jump Trading, USA</td>
</tr>
<tr>
<td>Wenwu Wang</td>
<td>University of Surrey, UK</td>
</tr>
<tr>
<td>Xiangui Kang</td>
<td>Sun Yat-Sen University</td>
</tr>
<tr>
<td>Xie Yao</td>
<td>Georgia University of Technology, USA</td>
</tr>
<tr>
<td>Yannick Deville</td>
<td>Université de Toulouse, UPS-OMP, CNRS, France</td>
</tr>
<tr>
<td>Yannis Kopsinis</td>
<td>University of Edingburgh, UK</td>
</tr>
<tr>
<td>Yinan Yu</td>
<td>Chalmers University, Sweden</td>
</tr>
<tr>
<td>Yuejie Chi</td>
<td>Ohio State University, USA</td>
</tr>
<tr>
<td>Zhanyu Ma</td>
<td>Beijing University of Posts and Telecommunications, China</td>
</tr>
<tr>
<td>Zhe (Sage) Chen</td>
<td>New York University, USA</td>
</tr>
<tr>
<td>Zhijian Ou</td>
<td>Tsinghua University, China</td>
</tr>
</tbody>
</table>
VENUE

Hotel Comwell Hvide Hus Aalborg
Vesterbro 2, 9000 Aalborg, Danmark Phone: +45 9813 8400

Comwell Hvide Hus is a centrally located Hotel in the middle of Aalborg. The hotel is located at Kildeparken with a lot of green areas and different attractions. Have a walk to experience the park and “the singing trees”. At the end of Kildeparken you are able to go through the station tunnel, where you will find the central street called Boulevarden. Among and at the end of Boulevarden you will find the center of Aalborg with a lot of different stores and restaurants.

At Comwell Hvide Hus you are also able to see Aalborg from the top. On the 15th floor there is meeting facilities – you are welcome to go and have a look. And you are also welcome to take the outdoor stairs all the way down again.

The hotel offers free Wi-Fi. It is called TDC, and there is no code.

During a conference it is free for the participants to park on the hotels parking lot. You find the parking spaces in front, in the back and in the cellar of the hotel.

In the reception area you will find a Co-Working area, where you are able to have your business meeting, phone call or just a cup of the free coffee.

You will find staff at the reception area twenty-four/seven.

We look forward welcoming you.
Musikkens Hus, Aalborg
Musikkens Plads 1, 9000 Aalborg, Danmark

The House of Music (Musikkens Hus) is an architectural lighthouse of Aalborg and Northern Jutland, and also very much a national and international rendezvous, where visitors, students, business and musicians are brought together. The vision for the House of Music in Northern Jutland has been to create a venue for concerts with acoustics on an international level to be the focal point of both the musical and cultural life in Aalborg.

Schedule:
• **18:18** – Bus departure time at Hvide Hus. It is a 10-minute drive to Musikkens Hus.
• 18:45 – Welcome drinks at Øvre/Upper Foyer of Musikkens Hus. Participants are guided to walk down through the main concert hall to the Upper Restaurant.
• 19:15 – The beginning of banquet at the Upper Restaurant.
• 22:00 – The end of banquet.
• **22:10 (10:10 pm)** – Bus departure time at Musikkens Hus to drive back to Hvide Hus (Workshop venue).
SPONSOR

IEEE Signal Processing Society

SUPPORTERS

Danmarks Tekniske Universitet

DTU

Aalborg University

Det Obelske Familiefond

Thomas B. Thriges Fond

Danish Sound Network

BANG & OLUFSEN

IEEE Denmark Section

Tencent AI Lab